कोई इलेक्ट्रॉन $2.0 \times 10^{4}\, N C ^{-1}$ परिमाण के एकसमान विध्यूत क्षेत्र में $1.5 \,cm$ दूरी तक गिरता है [चित्र $( a )]$ । क्षेत्र का परिमाण समान रखते हुए इसकी दिशा उत्क्रमित कर दी जाती है तथा अब कोई प्रोटोन इस क्षेत्र में उतनी ही दूरी तक गिरता है [ चित्र $( b )$ ]। दोनों प्रकरणों में गिरने में लगे समय की गणना कीजिए। इस परिस्थिति की 'गुरूत्व के अधीन मुक्त पतन' से तुलना कीजिए।
Solution In Figure $( a )$ the field is upward, so the negatively charged electron experiences a downward force of magnitude $e E$ where $E$ is the magnitude of the electric field. The acceleration of the electron is
$a_{e}=e E / m_{e}$
where $m_{e}$ is the mass of the electron.
Starting from rest, the time required by the electron to fall through a distance $h$ is given by $t_{e}=\sqrt{\frac{2 h}{a_{e}}}=\sqrt{\frac{2 h m_{e}}{e E}}$
For $e=1.6 \times 10^{-19} \,C , m_{e}=9.11 \times 10^{-31} \,kg$
$E=2.0 \times 10^{4} \,N\, C ^{-1}, h=1.5 \times 10^{-2} \,m$
$t_{ e }=2.9 \times 10^{-9}\, s$
In Figure $(b)$, the field is downward, and the positively charged proton experiences a downward force of magnitude $e E .$ The acceleration of the proton is $a_{p}=e E / m_{p}$
where $m_{p}$ is the mass of the proton; $m_{p}=1.67 \times 10^{-27}$ $kg$. The time of fall for the proton is
$t_{p}=\sqrt{\frac{2 h}{a_{p}}}=\sqrt{\frac{2 h m_{p}}{e E}}=1.3 \times 10^{-7} \;s$
Thus, the heavier particle (proton) takes a greater time to fall through the same distance. This is in basic contrast to the situation of 'free fall under gravity" where the time of fall is independent of the mass of the body. Note that in this example we have ignored the acceleration due to gravity in calculating the time of fall. To see if this is justified, let us calculate the acceleration of the proton in the given electric field:
$a_{p}=\frac{e E}{m_{p}}$
$=\frac{\left(1.6 \times 10^{-19} \,C \right) \times\left(2.0 \times 10^{4} \,N\,C ^{-1}\right)}{1.67 \times 10^{-27}\, kg }$
$=1.9 \times 10^{12} \,m s ^{-2}$
which is enormous compared to the value of $g\left(9.8\, m s ^{-2}\right),$ the acceleration due to gravity. The acceleration of the electron is even greater. Thus, the effect of acceleration due to gravity can be ignored in this example.
एक इलेक्ट्रॉन पर आवेश ‘$e$’ तथा द्रव्यमान ‘$m$’ है, समरूप विद्युत क्षेत्र $E$ में गति कर रहा है। इसका त्वरण होगा
चित्र में दर्शाये अनुसार, दो आवेशित समान्तर पट्टियों के बीच $10 \mathrm{~N} / \mathrm{C}$ का कोई एक समान विद्युत क्षेत्र उत्पन्न होता है। पट्टियों के बीच के क्षेत्र में, एक इलेक्ट्रॉन $0.5\ \mathrm{eV}$ गतिज ऊर्जा के साथ प्रवेश करता है। प्रत्येक पट्टी की लम्बाई $10 \mathrm{~cm}$ है। इलेक्ट्रॉन जैसे ही क्षेत्र के बाहर आता है, तो इसके पथ में हुआ विचलन कोण $(\theta) . . .. { }^{\circ}$ (डिग्री) है।
$5 \times {10^6}\,m/sec$ की चाल से गतिमान एक इलेक्ट्रॉन $1 \times {10^3}\,N/C$ तीव्रता के विद्युत क्षेत्र में क्षेत्र के समान्तर प्रवेश करता है। विद्युत क्षेत्र के कारण इलेक्ट्रॉन का मंदन हो रहा है। बताइये इलेक्ट्रॉन रुकने से पहले (क्षण भर रुकने से पहले) कितनी दूरी तय करेगा (इलेक्ट्रॉन का द्रव्यमान $ = 9 \times {10^{ - 31}}\,Kg$ एवं आवेश $ = 1.6 \times {10^{ - 19}}\,C)$
एक आवेशित कण ( द्रव्यमान $m$ एवं आवेश $q )$ $X$ अक्ष के सापेक्ष $V _{0}$ वेग से गतिमान है। जब यह मूल बिन्दु से एकसमान विघुत क्षेत्र $\overrightarrow{ E }=- E \hat{ j }$ क्षेत्र से गुजरता है तो $x = d$ से विस्तारित होता है। क्षेत्र $X > d$ में इलेक्ट्रॉन पथ का समीकरण है
एक इलेक्ट्रॉन विद्युत क्षेत्र में किसी वेग से विद्युत बल रेखाओं की दिशा में प्रवेश करता है तो