एक इलेक्ट्रॉनिक एसेंबली के दो सहायक निकाय $A$ और $B$ हैं। पूर्ववर्ती निरीक्षण द्वारा निम्न प्रायिकताएँ ज्ञात है :

$P ( A$ के असफल होने की $)=0.2$

$P ( B$ के अकेले असफल होने की $)=0.15$

$P ( A$ और $B$ के असफल होने की $)=0.15$

तो, निम्न प्रायिकताएँ ज्ञात कीजिए :

$P ( A$ के अकेले असफल होने की $)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the event in which $A$ fails and $B $ fails be denote by $E_{A}$ and $E_{B}$.

$P\left(E_{A}\right)=0.2$

$\mathrm{P}\left(\mathrm{E}_{\mathrm{A}} \text { and } \mathrm{E}_{\mathrm{B}}\right)=0.15$

$\mathrm{P}(\mathrm{B} \text { fails alone })=\mathrm{P}\left(\mathrm{E}_{\mathrm{B}}\right)-\mathrm{P}\left(\mathrm{E}_{\mathrm{A}} \text { and } \mathrm{E}_{\mathrm{B}}\right)$

$\therefore $  $ 0.15=P\left(E_{B}\right)-0.15$

$\therefore $ $ \mathrm{P}\left(\mathrm{E}_{\mathrm{B}}\right)=0.3$

$\mathrm{P}$ $(A$ fails alone $)$ $=\mathrm{P}\left(\mathrm{E}_{\mathrm{A}}\right)-\mathrm{P}\left(\mathrm{E}_{\mathrm{A}} \text { and } \mathrm{E}_{\mathrm{B}}\right)$

$=0.2-0.15$

$=0.05$

Similar Questions

यदि $A$ तथा $B$ दो स्वेच्छ घटनायें हो, तब

तीन व्यक्ति $P, Q$ तथा $R$ स्वतंत्र रूप से एक निशाने को भेदने का प्रयास करते हैं। यदि उनके निशाने को भेद पाने की प्रायिकताएं क्रमशः $\frac{3}{4}, \frac{1}{2}$ तथा $\frac{5}{8}$ हैं, तो $P$ अथवा $Q$ के निशाना भेद पाने परन्तु $R$ के निशाना न भेद पाने की प्रायिकता है 

  • [JEE MAIN 2017]

एक कक्षा के $60$ विद्यार्थियों में से $30$ ने एन. सी. सी. ( $NCC$ ), $32$ ने एन. एस. एस. $(NSS)$ और $24$ ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि

विद्यार्थी ने न तो एन.सी.सी. और न ही एन.एस.एस. को चुना है।

यदि $E$ और $F$ घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{1}{4}, P ( F )=\frac{1}{2}$ और $P ( E$ और $F )=\frac{1}{8},$ तो ज्ञात कीजिए $P ( E -$ नहीं और $F-$ नहीं)।

भारत, वेस्टइंडीज व आस्ट्रेलिया प्रत्येक से $2$ मैच खेलता है। किसी भी मैच में भारत के अंक $0, 1, 2$ अर्जित करने की प्रायिकतायें क्रमश: $0.45, 0.05$ व $0.50$ हैं। यह मानकर कि परिणाम स्वतन्त्र हैं भारत के कम से कम $7$ अंक अर्जित करने की प्रायिकता है

  • [IIT 1992]