An ellipse, with foci at $(0, 2)$ and $(0, -2)$ and minor axis of length $4$, passes through which of the following points?
$(2, \sqrt 2 )$
$(2, 2\sqrt 2 )$
$(1, 2\sqrt 2 )$
$( \sqrt 2, 2 )$
An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $P\left( {\frac{1}{2},\;1} \right)$. Its one directrix is the common tangent nearer to the point $P$, to the circle ${x^2} + {y^2} = 1$ and the hyperbola ${x^2} - {y^2} = 1$. The equation of the ellipse in the standard form, is
If any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ cuts off intercepts of length $h$ and $k$ on the axes, then $\frac{{{a^2}}}{{{h^2}}} + \frac{{{b^2}}}{{{k^2}}} = $
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$
The equation of tangent and normal at point $(3, -2)$ of ellipse $4{x^2} + 9{y^2} = 36$ are
If the length of the major axis of an ellipse is three times the length of its minor axis, then its eccentricity is