An ellipse, with foci at $(0, 2)$ and $(0, -2)$ and minor axis of length $4$, passes through which of the following points?
$(2, \sqrt 2 )$
$(2, 2\sqrt 2 )$
$(1, 2\sqrt 2 )$
$( \sqrt 2, 2 )$
The equation to the locus of the middle point of the portion of the tangent to the ellipse $\frac{{{x^2}}}{{16}}$$+$ $\frac{{{y^2}}}{9}$ $= 1$ included between the co-ordinate axes is the curve :
If $F_1$ and $F_2$ be the feet of the perpendicular from the foci $S_1$ and $S_2$ of an ellipse $\frac{{{x^2}}}{5} + \frac{{{y^2}}}{3} = 1$ on the tangent at any point $P$ on the ellipse, then $(S_1 F_1) (S_2 F_2)$ is equal to
The centre of the ellipse $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$ is
If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b} \right)$ is twice the area of the ellipse, then the eccentricity of the ellipse is
If tangents are drawn to the ellipse $x^2 + 2y^2 = 2$ at all points on the ellipse other than its four vertices than the mid points of the tangents intercepted between the coordinate axes lie on the curve