The distance between the foci of an ellipse is 16 and eccentricity is $\frac{1}{2}$. Length of the major axis of the ellipse is

  • A

    $8$

  • B

    $64$

  • C

    $16$

  • D

    $32$

Similar Questions

The equation of the ellipse referred to its axes as the axes of coordinates with latus rectum of length $4$ and distance between foci $4 \sqrt 2$ is-

Consider the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let $S(p, q)$ be a point in the tirst quadrant such that $\frac{p^2}{9}+\frac{q^2}{4}>1$. I wo tangents are drawn from $S$ to the ellipse, of which one meets the ellipse at one end point of the minor axis and the other meets the ellipse at a point $T$ in the fourth quadrant. Let $R$ be the vertex of the ellipse with positive $x$-coordinate and $O$ be the center of the ellipse. If the area of the triangle $\triangle O R T$ is $\frac{3}{2}$, then which of the following options is correct?

  • [IIT 2024]

Let the eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$, be $\frac{1}{4}$. If this ellipse passes through the point $\left(-4 \sqrt{\frac{2}{5}}, 3\right)$, then $a^{2}+b^{2}$ is equal to

  • [JEE MAIN 2022]

The acute angle between the pair of tangents drawn to the ellipse $2 x^{2}+3 y^{2}=5$ from the point $(1,3)$ is.

  • [JEE MAIN 2022]

Point $'O' $ is the centre of the ellipse with major axis $AB$ $ \&$ minor axis $CD$. Point $F$ is one focus of the ellipse. If $OF = 6 $  $ \&$  the diameter of the inscribed circle of triangle $OCF$  is $2, $ then the product $ (AB)\,(CD) $ is equal to