- Home
- Standard 11
- Mathematics
एक दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^x}=1(a > b)$, एवं एक परवलय $x^2=4(y+b)$ इस प्रकार हैं कि दीर्घवृत्त की दो नाभियाँ एवं परवलय के नाभिलम्ब के अन्तःबिंदु $(end\,points)$ एक वर्ग के शीर्ष हैं | दीर्घर्वृत की उत्केन्द्रता ?
$\frac{1}{\sqrt{13}}$
$\frac{2}{\sqrt{13}}$
$\frac{1}{\sqrt{11}}$
$-\frac{2}{\sqrt{11}}$
Solution
(b)
Equation of ellipse
$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a > b$
Equation of parabola $x^2=4(y+b)$
Foci of ellipse $(\pm a e, 0)$.
End of latusrectum of parabola
$=(\pm 2,1-b)$
$A B C D$ is a square
$A B=C D \Rightarrow 2 a e=4 \Rightarrow a e=2$
$B C=C D \Rightarrow B C^2=C D^2$
$(2-a e)^2+(1-b)^2=4^2$
$(2-a e)^2+(1-b)^2=4^2$
$0+(1-b)^2=4^2$
$1-b=\pm 4$
$b=5, b=-3 \Rightarrow a=\sqrt{29}$ or $\sqrt{13}$
$e=\sqrt{1-\frac{b^2}{a^2}}$
$e=\sqrt{1-\frac{9}{13}}=\frac{2}{\sqrt{13}}$ or $2$