एक दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^x}=1(a > b)$, एवं एक परवलय $x^2=4(y+b)$ इस प्रकार हैं कि दीर्घवृत्त की दो नाभियाँ एवं परवलय के नाभिलम्ब के अन्तःबिंदु $(end\,points)$ एक वर्ग के शीर्ष हैं | दीर्घर्वृत की उत्केन्द्रता ?
$\frac{1}{\sqrt{13}}$
$\frac{2}{\sqrt{13}}$
$\frac{1}{\sqrt{11}}$
$-\frac{2}{\sqrt{11}}$
यदि अतिपरवलय ${x^2} - {y^2} = 9$ की एक स्पर्श जीवा $x = 9$ है, तो सम्बन्धित युगल स्पर्श रेखा $(Pair\,\, of\,\, tangents)$ का समीकरण है
उस दीर्घवृत्त का समीकरण जिसका एक शीर्ष $(0,7)$ तथा संगत नियता $y = 12$ है, होगा
एक दीर्घवृत्त, जिसका केंद्र मूल बिंदु पर है तथा दीर्घ अक्ष $x$-अक्ष की दिशा में है, पर विचार कीजिए। यदि उसकी उत्केन्द्रता $\frac{3}{5}$ तथा नाभियों के बीच की दूरी $6$ है, तो उस चतुर्भुज, जो दीर्घवृत्त के अन्तर्गत बनाई गई है तथा जिसके शीर्ष, दीर्घवृत्त के शीर्षों पर हैं, का क्षेत्रफल (वर्ग इकाइयों में) है
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष की लंबाई $26,$ नाभियाँ $(±5,0)$
माना दीर्धवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{4}=1, a > 2$, के अन्तर्गत, अधिकतम क्षेत्रफल वाले त्रिभुज का एक शीर्ष, दीर्घवत्त के दीर्घअक्ष के एक सिरे पर है तथा एक भुजा $y$-अक्ष के समान्तर है। यदि त्रिभुज का अधिकतम क्षेत्रफल $6 \sqrt{3}$ है तो दीर्घवृत्त की उत्केन्द्रता होगी :