An ellipse $\frac{\left(x-x_0\right)^2}{a^2}+\frac{\left(y-y_0\right)^2}{b^2}=1$, $a > b$, is tangent to both $x$ and $y$ axes and is placed in the first quadrant. Let $F_1$ and $F_2$ be two foci of the ellipse and $O$ be the origin with $OF _1 < OF _2$. Suppose the triangle $OF _1 F _2$ is an isosceles triangle with $\angle OF _1 F _2=120^{\circ}$. Then the eccentricity of the ellipse is

  • [KVPY 2021]
  • A

    $\frac{1}{2 \sqrt{3}}$

  • B

    $\frac{2}{3}$

  • C

    $\frac{1}{2}$

  • D

    $\frac{1}{\sqrt{2}}$

Similar Questions

The line $lx + my + n = 0$is a normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if

If lines $3x + 2y = 10$ and $-3x + 2y = 10$ are tangents at the extremities of latus rectum of an ellipse whose centre is origin, then the length of latus rectum of ellipse is 

If the line $y = 2x + c$ be a tangent to the ellipse $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$, then $c = $

An ellipse is drawn by taking a diameter of the circle ${\left( {x - 1} \right)^2} + {y^2} = 1$ as its semi-minor axis and a diameter of the circle ${x^2} + {\left( {y - 2} \right)^2} = 4$ is semi-major axis. If the center of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is :

  • [AIEEE 2012]

The eccentricity of the ellipse $25{x^2} + 16{y^2} - 150x - 175 = 0$ is