An ellipse $\frac{\left(x-x_0\right)^2}{a^2}+\frac{\left(y-y_0\right)^2}{b^2}=1$, $a > b$, is tangent to both $x$ and $y$ axes and is placed in the first quadrant. Let $F_1$ and $F_2$ be two foci of the ellipse and $O$ be the origin with $OF _1 < OF _2$. Suppose the triangle $OF _1 F _2$ is an isosceles triangle with $\angle OF _1 F _2=120^{\circ}$. Then the eccentricity of the ellipse is
$\frac{1}{2 \sqrt{3}}$
$\frac{2}{3}$
$\frac{1}{2}$
$\frac{1}{\sqrt{2}}$
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $36 x^{2}+4 y^{2}=144$
If $F_1$ and $F_2$ be the feet of the perpendicular from the foci $S_1$ and $S_2$ of an ellipse $\frac{{{x^2}}}{5} + \frac{{{y^2}}}{3} = 1$ on the tangent at any point $P$ on the ellipse, then $(S_1 F_1) (S_2 F_2)$ is equal to
If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide, then the value of ${b^2}$ is
The area of the rectangle formed by the perpendiculars from the centre of the standard ellipse to the tangent and normal at its point whose eccentric angle is $\pi /4$ is :
Find the equation for the ellipse that satisfies the given conditions: Foci $(\pm 3,\,0),\,\, a=4$