If a tangent having slope of $ - \frac{4}{3}$ to the ellipse $\frac{{{x^2}}}{{18}} + \frac{{{y^2}}}{{32}} = 1$ intersects the major and minor axes in points $A$ and $B$ respectively, then the area of $\Delta OAB$ is equal to .................. $\mathrm{sq. \, units}$ ($O$ is centre of the ellipse)

  • A

    $12$

  • B

    $48$ 

  • C

    $64$

  • D

    $24$ 

Similar Questions

Let a tangent to the Curve $9 x^2+16 y^2=144$ intersect the coordinate axes at the points $A$ and $B$. Then, the minimum length of the line segment $A B$ is $.........$

  • [JEE MAIN 2023]

For some $\theta \in\left(0, \frac{\pi}{2}\right),$ if the eccentricity of the hyperbola, $x^{2}-y^{2} \sec ^{2} \theta=10$ is $\sqrt{5}$ times the eccentricity of the ellipse, $x^{2} \sec ^{2} \theta+y^{2}=5,$ then the length of the latus rectum of the ellipse is

  • [JEE MAIN 2020]

Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right), y_1<0, y_2<0$, be the end points of the latus rectum of the ellipse $x^2+4 y^2=4$. The equations of parabolas with latus rectum $P Q$ are

$(A)$ $x^2+2 \sqrt{3} y=3+\sqrt{3}$

$(B)$ $x^2-2 \sqrt{3} y=3+\sqrt{3}$

$(C)$ $x^2+2 \sqrt{3} y=3-\sqrt{3}$

$(D)$ $x^2-2 \sqrt{3} y=3-\sqrt{3}$

  • [IIT 2008]

Which one of the following is the common tangent to the ellipses, $\frac{{{x^2}}}{{{a^2} + {b^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $=1\&$ $ \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{a^2} + {b^2}}}$ $=1$

A triangle is formed by the tangents at the point $(2,2)$ on the curves $y^2=2 x$ and $x^2+y^2=4 x$, and the line $x+y+2=0$. If $r$ is the radius of its circumcircle, then $r ^2$ is equal to $........$.

  • [JEE MAIN 2023]