किसी घटना के अनुकूल संयोगानुपात $4 : 5$ हैं, तो उस घटना के घटित होने की प्रायिकता है
$\frac{1}{5}$
$\frac{4}{5}$
$\frac{4}{9}$
$\frac{5}{9}$
यदि $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ और घटनाएँ $A$ तथा $B$ स्वतन्त्र हों, तो $x= $
एक इलेक्ट्रॉनिक एसेंबली के दो सहायक निकाय $A$ और $B$ हैं। पूर्ववर्ती निरीक्षण द्वारा निम्न प्रायिकताएँ ज्ञात है :
$P ( A$ के असफल होने की $)=0.2$
$P ( B$ के अकेले असफल होने की $)=0.15$
$P ( A$ और $B$ के असफल होने की $)=0.15$
तो, निम्न प्रायिकताएँ ज्ञात कीजिए :
$P ( A$ के अकेले असफल होने की $)$
एक घुड़-दौड़ में तीन घोड़ों के अनुकूल संयोगानुपात $1:2 , 1:3$ व $1:4$ हैं, तो किसी एक घोड़े के द्वारा दौड़ जीते जाने की प्रायिकता है
एक अनभिनत (unbiased) पासे को दो बार उछाला गया। मान लें $A$ घटना 'पहली उछाल पर विषम संख्या प्राप्त होना' और $B$ घटना 'द्वितीय उछाल पर विषम संख्या प्राप्त होना ' दर्शाते हैं। घटनाओं $A$ और $B$ के स्वातंत्र्य का परीक्षण कीजिए।
$A$ तथा $B$ दो ऐसी घटनाएँ हैं कि $P(A) = 0.4$ , $P\,(A + B) = 0.7$,$P\,(AB) = 0.2,$ तो $P\,(B) = $