An expression of energy density is given by $u=\frac{\alpha}{\beta} \sin \left(\frac{\alpha x}{k t}\right)$, where $\alpha, \beta$ are constants, $x$ is displacement, $k$ is Boltzmann constant and $t$ is the temperature. The dimensions of $\beta$ will be.
$\left[ ML ^{2} T ^{-2} \theta^{-1}\right]$
$\left[ M ^{0} L ^{2} T ^{-2}\right]$
$\left[ M ^{0} L ^{0} T ^{0}\right]$
$\left[ M ^{0} L ^{2} T ^{0}\right]$
Dimensions of magnetic field intensity is
The dimensional formula of wave number is
The dimensional formula for Boltzmann's constant is
Dimensions of potential energy are
Identify the pair which has different dimensions