An ice box used for keeping eatable cold has a total wall area of $1\;metr{e^2}$ and a wall thickness of $5.0cm$. The thermal conductivity of the ice box is $K = 0.01\;joule/metre{ - ^o}C$. It is filled with ice at ${0^o}C$ along with eatables on a day when the temperature is $30°C$ . The latent heat of fusion of ice is $334 \times {10^3}joules/kg$. The amount of ice melted in one day is ........ $gms$ ($1day = 86,400\;\sec onds$)
$776$
$7760$
$11520$
$1552$
Three identical rods $AB$, $CD$ and $PQ$ are joined as shown. $P$ and $Q$ are mid points of $AB$ and $CD$ respectively. Ends $A, B, C$ and $D$ are maintained at $0^o C, 100^o C, 30^o C$ and $60^o C$ respectively. The direction of heat flow in $PQ$ is
Consider two rods of same length and different specific heats $\left(S_{1}, S_{2}\right)$, conductivities $\left(K_{1}, K_{2}\right)$ and area of cross-sections $\left(A_{1}, A_{2}\right)$ and both having temperatures $T_{1}$ and $T_{2}$ at their ends. If rate of loss of heat due to conduction is equal, then
Four conducting rods are joined to make a square. All rods are identical and ends $A, B$ and $C$ are maintained at given temperatures. choose $INCORRECT$ statement for given arrangement in steady state. (value of $\frac {KA}{L}$ is $1\frac{J}{{{S^o}C}}$ , symbols , have their usual meaning)
Three rods of identical cross-section and lengths are made of three different materials of thermal conductivity $K _{1}, K _{2},$ and $K _{3}$, respectively. They are joined together at their ends to make a long rod (see figure). One end of the long rod is maintained at $100^{\circ} C$ and the ther at $0^{\circ} C$ (see figure). If the joints of the rod are at $70^{\circ} C$ and $20^{\circ} C$ in steady state and there is no loss of energy from the surface of the rod, the correct relationship between $K _{1}, K _{2}$ and $K _{3}$ is
A piece of glass is heated to a high temperature and then allowed to cool. If it cracks, a probable reason for this is the following property of glass