11.Thermodynamics
medium

An ideal monoatomic gas with pressure $P$, volume $V$ and temperature $T$ is expanded isothermally to a volume $2\, V$ and a final pressure $P_i$. If the same gas is expanded adiabatically to a volume $2\,V$, the final pressure is $P_a$ . The ratio $\frac{{{P_a}}}{{{P_i}}}$ is

A

$2^{-1/3}$

B

$2^{1/3}$

C

$2^{2/3}$

D

$2^{-2/3}$

(AIEEE-2012)

Solution

For isothermal process:

$P V=P_{t}, 2 V$

$P=2 P_{i}\,\,\,\,\,\,\,\,…(i)$

For adiabatic process $\mathrm{PV}^{\gamma}=\mathrm{P}_{\mathrm{a}}(2 \mathrm{V})^{\gamma}$

$(\because \text { for monatomic gas } \gamma=5 / 3)$

or, $\quad 2 \mathrm{P}_{\mathrm{i}} \mathrm{V}^{\frac{5}{3}}=P_{a}(2 \mathrm{V})^{\frac{5}{3}} \quad[\text { From }(\mathrm{i})]$

$\Rightarrow \frac{P_{a}}{P_{i}}=\frac{2}{2^{\frac{5}{3}}}$

$\Rightarrow \quad \frac{P_{a}}{P_i}=2^{\frac{-2}{3}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.