- Home
- Standard 11
- Physics
11.Thermodynamics
hard
Consider a spherical shell of radius $R$ at temperature $T$. The black body radiation inside it can be considered as an ideal gas of photons with internal energy per unit volume$E=$ $\frac{U}{V} \propto {T^4}$ and pressure $P = \frac{1}{3}\left( {\frac{U}{V}} \right)$ If the shell now undergoes an adiabatic expansion the relation between $T$ and $R$ is
A
$T \propto {e^{ - 3R}}\;\;\;\;\;\;\;\;\;\;\;\;$
B
$\;T \propto \frac{1}{R}$
C
$\;T \propto \frac{1}{{{R^3}}}$
D
$\;T \propto {e^{ - R}}$
(JEE MAIN-2015)
Solution
$As,\,P = \frac{1}{3}\left( {\frac{U}{V}} \right)$
$But\frac{U}{V} = K{T^4}$
$So,P = \frac{1}{3}K{T^4}$
$or\,\frac{{uRT}}{V} = \frac{1}{3}K{T^4}\,\,\,\left[ {As\,PV = u\,RT} \right]$
$\frac{4}{3}\pi {R^3}{T^3} = constant$
$Therfore,T \propto \frac{1}{R}$
Standard 11
Physics