पूर्णांकों $1,2,3, \ldots, 50$ से एक पूर्णांक यादृच्छया चुना जाता है। चुने गए पूर्णांक के $4,6$ तथा $7$ में से कम से कम एक के गुणज होने की प्रायिकता है
$\frac{8}{25}$
$\frac{21}{50}$
$\frac{9}{50}$
$\frac{14}{25}$
किसी घटना के प्रतिकूल संयोगानुपात $5 : 2$ हैं एवं एक अन्य घटना के अनुकूल संयोगानुपात $6 : 5$ हैं। यदि दोनों घटनायें स्वतंत्र हों, तो इन घटनाओं में से कम से कम एक घटना के घटित होने की प्रायिकता है
निम्नलिखित सारणी में खाली स्थान भरिए:
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$0.35$ | ........... | $0.25$ | $0.6$ |
माना $A$ और $B$ दो स्वतंत्र घटनायें हैं। दोनों के एक साथ होने की प्रायिकता $1/6$ और दोनों के न होने की प्रायिकता $1/3$ है, तब $A$ के होने की प्रायिकता है
$A$ और $B$ दो घटनाएँ इस प्रकार हैं कि $P ( A )=0.54, P ( B )=0.69$ और $P ( A \cap B )=0.35 .$
ज्ञात कीजिए
$P \left( A ^{\prime} \cap B ^{\prime}\right)$
$A$ व $B$ दो परस्पर अपवर्जी घटनायें इस प्रकार हैं कि $P(A) = 0.45$ व $P(B) = 0.35,$ तो $P (A$ या $B$) का मान है