पूर्णांकों $1,2,3, \ldots, 50$ से एक पूर्णांक यादृच्छया चुना जाता है। चुने गए पूर्णांक के $4,6$ तथा $7$ में से कम से कम एक के गुणज होने की प्रायिकता है
$\frac{8}{25}$
$\frac{21}{50}$
$\frac{9}{50}$
$\frac{14}{25}$
निम्नलिखित सारणी में खाली स्थान भरिए:
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$\frac {1}{3}$ | $\frac {1}{5}$ | $\frac {1}{15}$ | ........ |
माना दो अनभिनत छ: फलकीय पासे $A$ तथा $B$ एक साथ उछाले गये। माना घटना $E_{1}$ पासे $A$ पर चार आना दर्शाती हैं, घटना $E_{2}$ पासे $B$ पर $2$ आना दर्शाती है तथा घटना $E_{3}$ दोनों पासों पर आने वाली संख्याओं का योग विषम दर्शाती है, तो निम्न में से कौन-सा कथन सत्य नहीं है?
यदि घोड़े $A$ के किसी दौड़ को जीतने की प्रायिकता $1/4$ हो और घोड़े $B$ के उसी दौड़ को जीतने की प्रायिकता $1/5$ हो, तो उनमें से किसी एक के दौड़ को जीतने की प्रायिकता है
एक कक्षा के $60$ विद्यार्थियों में से $30$ ने एन. सी. सी. ( $NCC$ ), $32$ ने एन. एस. एस. $(NSS)$ और $24$ ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
विद्यार्थी ने एन.सी.सी. या एन. एस.एस. को चुना है।
दो समसन्तुलित पाँसों को एक ही साथ उछाला जाता है। प्राप्त अंकों का योग विषम अथवा $7$ से कम अथवा दोनों ही हों, इसकी प्रायिकता है