एक सिक्का दो बार उछाला जाता है। यदि घटनाएँ $A$ तथा $B$ निम्न प्रकार परिभाषित हो : $A =$ पहली उछाल पर शीर्ष, $B = $ दूसरी उछाल पर शीर्ष, तो $(A \cup B)$ की प्रायिकता है
$\frac{1}{4}$
$\frac{1}{2}$
$\frac{1}{8}$
$\frac{3}{4}$
यदि $A, B, C$ ऐसी घटनाएँ हैं कि $P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$ तो $P\,(A + B) = $
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A \cup B)\, + P\,(A \cap B) = \frac{7}{8}$ तथा $P\,(A) = 2\,P\,(B),$ तो $P\,(A) = $
$52$ ताश के पत्तों की गड्डी से एक पत्ता खींचा जाता है, इसके बेगम या पान का पत्ता होने की प्रायिकता है
मान लें $A$ तथा $B$ स्वतंत्र घटनाएँ हैं और $P ( A )=\frac{1}{2}$ तथा $P ( B )=\frac{7}{12}$ और $P ( A$ -नहीं और $B$ -नहीं $)=\frac{1}{4}$. क्या $A$ और $B$ स्वतंत्र घटनाएँ हैं?
यदि $A$ तथा $B$ दो ऐसी घटनाएँ हों कि $P\,(A + B) = \frac{5}{6},$ $P\,(AB) = \frac{1}{3}\,$ तथा $P\,(\bar A) = \frac{1}{2},$ तो घटनाएँ $A$ तथा $B$ हैं