एक सिक्का दो बार उछाला जाता है। यदि घटनाएँ $A$ तथा $B$ निम्न प्रकार परिभाषित हो : $A =$ पहली उछाल पर शीर्ष, $B = $ दूसरी उछाल पर शीर्ष, तो $(A \cup B)$ की प्रायिकता है
$\frac{1}{4}$
$\frac{1}{2}$
$\frac{1}{8}$
$\frac{3}{4}$
तीन व्यक्ति $P, Q$ तथा $R$ स्वतंत्र रूप से एक निशाने को भेदने का प्रयास करते हैं। यदि उनके निशाने को भेद पाने की प्रायिकताएं क्रमशः $\frac{3}{4}, \frac{1}{2}$ तथा $\frac{5}{8}$ हैं, तो $P$ अथवा $Q$ के निशाना भेद पाने परन्तु $R$ के निशाना न भेद पाने की प्रायिकता है
एक पाठशाला की कक्षा $XI$ के $40 \%$ विद्यार्थी गणित पढते हैं और $30 \%$ जीव विज्ञान पढते हैं। कक्षा के $10 \%$ विद्यार्थी गणित और जीव विज्ञान दोनों पढते हैं। यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है , तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।
$A$ और $B$ दो घटनाएँ इस प्रकार हैं कि $P ( A )=0.54, P ( B )=0.69$ और $P ( A \cap B )=0.35 .$
ज्ञात कीजिए
$P\left(A \cap B^{\prime}\right)$
दो विद्यार्थियों अनिल और आशिमा एक परीक्षा में प्रविष्ट हुए। अनिल के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.05$ है और आशिमा के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.10$ है। दोनों के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.02$ है। प्रायिकता ज्ञात कीजिए कि
दोनों में से कम से कम एक परीक्षा में उत्तीर्ण नहीं होगा।
एक न्याय संगत पासे $(fair\,die)$ के फलकों पर संख्याएँ $1,2,3$, $4,5,6$ लिखी हुई हैं। दो व्यक्ति $A , B$ इस पासे को बारी बारी फेंकते हैं और इस खेल में प्रथम बारी $A$ की होती है। जीतने वाला व्यक्ति वह है जिसके पासे के फेंकने पर मिली संख्या उसके. प्रतिद्वंदी द्वारा पिछली बार पासा फेंकने पर मिली संख्या से विभिन्न हो। $B$ के जीतने की प्रायिकता का मान होगा :