એક સમતોલ પાસાને બે વખત ફેંકવામાં આવે છે. ઘટના $A$, ‘પ્રથમ પ્રયત્ન અયુગ્મ સંખ્યા મળે” અને ઘટના $B$, “બીજા પ્રયત્ન અયુગ્મ સંખ્યા મળે તેમ હોય, તો ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે કેમ તે ચકાસો.
If all the $36$ elementary events of the experiment are considered to be equally likely, we have
$P(A)=\frac{18}{36}=\frac{1}{2}$ and $P(B)=\frac{18}{36}=\frac{1}{2}$
Also $P(A \cap B)=P($ odd number on both throws $)$
$=\frac{9}{36}=\frac{1}{4}$
Now $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
Clearly $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$
Thus, $A$ and $B$ are independent events
જો $A$ અને $B$ બે ઘટના છે કે જેથી $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ અને $P(\bar A) = \frac{1}{4},$ કે જ્યાં $\bar A$ એ ઘટના $A$ ની પૂરક ઘટના છે તો ઘટનાઓ $A$ અને $B$ એ . . . થાય .
ઘટનાઓ $A$ અને $B$ એવા પ્રકારની છે કે $P(A) = 0.42, P(B) = 0.48$ અને $P(A$ અને $B) = 0.16$.$ P(B-$ નહિ) શોધો.
જો $A$,$B$ અને $C$ એ ત્રણ ઘટના એવી છે કે જેથી $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ અને $P\left( {\bar A \cap B \cap C} \right) = 0.1$ થાય તો $P$(ઘટના $A$,$B$ અને $C$ માંથી ઓછામા ઓછા બે થાય) તેની કિમત મેળવો.
બે વિદ્યાર્થીઓ અનિલ અને આશિમા એક પરીક્ષામાં હાજર રહે છે. અનિલની પરીક્ષામાં પાસ થવાની સંભાવના $0.05$ અને આશિમાની પરીક્ષામાં પાસ થવાની સંભાવના $0.10$ છે. બંનેની પરીક્ષામાં પાસ થવાની સંભાવના $0.02 $ છે. નીચેની ઘટનાની સંભાવના શોધો : અનિલ અને આશિમા બંને પૈકી કોઈ પણ પરીક્ષામાં પાસ નહિ થઈ શકે.
$52$ પત્તા પૈકી યાર્દચ્છિક રીતે એક પત્તુ પસંદ કરતા તે પૈકી રાજા અથવા કાળીનું પત્તુ હોવાની સંભાવના કેટલી થાય ?