एक अनभिनत (unbiased) पासे को दो बार उछाला गया। मान लें $A$ घटना 'पहली उछाल पर विषम संख्या प्राप्त होना' और $B$ घटना 'द्वितीय उछाल पर विषम संख्या प्राप्त होना ' दर्शाते हैं। घटनाओं $A$ और $B$ के स्वातंत्र्य का परीक्षण कीजिए।
If all the $36$ elementary events of the experiment are considered to be equally likely, we have
$P(A)=\frac{18}{36}=\frac{1}{2}$ and $P(B)=\frac{18}{36}=\frac{1}{2}$
Also $P(A \cap B)=P($ odd number on both throws $)$
$=\frac{9}{36}=\frac{1}{4}$
Now $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
Clearly $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$
Thus, $A$ and $B$ are independent events
घटनाएँ $A$ और $B$ इस प्रकार हैं कि $P ( A )=0.42, P ( B )=0.48$ और $P ( A$ और $B )=0.16 .$ ज्ञात कीजिए
$P ( B-$ नहीं)
$12$ टिकट जिन पर $1, 2, 3......12$ अंकित है। एक टिकट यदृच्छया निकाला जाता है तो संख्या को $2$ या $3$ का गुणज होने की प्रायिकता है
यदि $A$ व $B$ दो घटनायें इस प्रकार हैं कि $P(A) = \frac{1}{2}$ व $P(B) = 2/3,$ तो
निम्नलिखित सारणी में खाली स्थान भरिए:
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$\frac {1}{3}$ | $\frac {1}{5}$ | $\frac {1}{15}$ | ........ |
यदि $A$ व $B$ दो घटनायें हैं। उनमें से ज्यादा से ज्यादा एक घटना के घटित होने की प्रायिकता है