$A $ અને $B$ એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે , $\frac{1}{2}$ અને $\frac{1}{3}$ છે. જો $A$ અને $B$ બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો બેમાંથી એકને જ સવાલનો ઉકેલ મળે તેની સંભાવના શોધો

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Probability of solving the problem by $\mathrm{A},\, \mathrm{P}(\mathrm{A})=\frac{1}{2}$ 

Probability of solving the problem by $\mathrm{B}, \,\mathrm{P}(\mathrm{B})=\frac{1}{3}$ 

since the problem is solved independently by $A$ and $B$,

$\therefore $ $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$

$P(A^{\prime})=1-P(A)=1-\frac{1}{2}=\frac{1}{2}$

$P(B^{\prime})=1-P(B)=1-\frac{1}{3}=\frac{2}{3}$

Probability that exactly one of them solves the problem is given by,

$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}\left(\mathrm{B}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{A})$

$=\frac{1}{2} \times \frac{2}{3}+\frac{1}{2} \times \frac{1}{3}$

$=\frac{1}{3}+\frac{1}{6}$

$=\frac{1}{2}$

Similar Questions

$A $ અને $B$ એક ચોક્કસ સવાલને સ્વતંત્ર રીતે ઉકેલે તેની સંભાવના અનુક્રમે , $\frac{1}{2}$ અને $\frac{1}{3}$ છે. જો $A$ અને $B$ બંને સ્વતંત્ર રીતે સવાલને ઉકેલવાનો પ્રયત્ન કરે, તો સવાલનો ઉકેલ મળે

કોઇ પ્રયોગમા બે સ્વત્રંત સાચી ઘટનાઓના વિધાન $A$ અને વિધાન $B$ છે જો $P\left( A \right) = 0.3$ , $P\left( {A \vee B} \right) = 0.8$ હોય તો $P\left( {A \to B} \right)$ ની કિમત મેળવો. (જ્યા $P(X)$ એ વિધાન $X$ સાચુ હોવાની સંભાવના છે )

ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ અને  $P (A -$ નહી અથવા $B-$ નહી $) =$ $\frac {1}{4}$. $A$ અને $B$ નિરપેક્ષ છે કે નહિ ?

ધારો કે ઘટનાઓ $A$ અને $B $ માટે, $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ અને $P\left( {\bar A} \right) = \frac{1}{4}$ છે,તો ઘટનાઓ $A$ અને $B$. . . . . .

  • [JEE MAIN 2014]

સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?

$E :$ ‘પસંદ કરેલ પતું કાળીનું છે'. $F :$ ‘પસંદ કરેલ પતું એક્કો છે'.