An uncharged sphere of metal is placed in between two charged plates as shown. The lines of force look like
$A$
$B$
$C$
$D$
An electric field $\overrightarrow{\mathrm{E}}=(2 \mathrm{xi}) \mathrm{NC}^{-1}$ exists in space. $\mathrm{A}$ cube of side $2 \mathrm{~m}$ is placed in the space as per figure given below. The electric flux through the cube is .................. $\mathrm{Nm}^2 / \mathrm{C}$
In figure $+Q$ charge is located at one of the edge of the cube, then electric flux through cube due to $+Q$ charge is
An electric field is uniform, and in the positive $x$ direction for positive $x,$ and uniform with the same magnitude but in the negative $x$ direction for negative $x$. It is given that $E =200 \hat{ i }\; N/C$ for $x\,>\,0$ and $E = - 200\hat i\;N/C$ for $x < 0 .$ A right ctrcular cyllnder of length $20 \;cm$ and radius $5\; cm$ has its centre at the origin and its axis along the $x$ -axis so that one face is at $x=+10\; cm$ and the other is at $x=-10\; cm$
$(a)$ What is the net outward flux through each flat face?
$(b)$ What is the flux through the side of the cylinder?
$(c)$ What is the net outward flux through the cylinder?
$(d)$ What is the net charge inside the cyllnder?
Figure shows the electric lines of force emerging from a charged body. If the electric field at $A$ and $B$ are ${E_A}$ and ${E_B}$ respectively and if the displacement between $A$ and $B$ is $r$ then
Units of electric flux are