વક્ર $\frac{|\mathrm{x}|}{2}+\frac{|\mathrm{y}|}{3}=1$ ની બહારની બાજુના પ્રદેશ અને ઉપવલય $\frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{y}^{2}}{9}=1$ ની અંદરની બાજુના પ્રદેશથી રચાતા વિસ્તારનું ક્ષેત્રફળ .......ચો.એકમ થાય
$3(4-\pi)$
$6(\pi-2)$
$3(\pi-2)$
$6(4-\pi)$
જો નિયામિકાઓ વચ્ચેનું અંતર એ નાભિઓ વચ્ચેના અંતર કરતા ત્રણ ગણું હોય, તો ઉપવલયની ઉત્કેન્દ્રતા.....
જો ઉપવલય $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$ પરના બિંદુઓ $P$ અને $Q$ માંથી દોરવામાં આવેલ સ્પર્શકો બિંદુ $R(\sqrt{2}, 2 \sqrt{2}-2)$ માં મળે છે. જો $S$ એ ઉપવલયની ઋણ મુખ્ય અક્ષની નાભી છે. તો $SP ^{2}+ SQ ^{2}$ ની કિમંત મેળવો.
જો ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ના નાભિલંબના એક અંત્યબિંદુ આગળનો અભિલંબ એ પ્રધાન અક્ષના એક અંત્યબિંદુમાંથી પસાર થતો હોય, તો
ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ પર બે બિંદુઓ ${\theta _1}\,$ અને ${\theta _2}$ ની જીવા . . . બિંદુ આગળ કાટખૂણે બનાવે છે. (જો ${\text{tan}}\,\,{\theta _{\text{1}}}\,\tan {\theta _2}\,\, = \,\, - \frac{{{a^2}}}{{{b^2}}}$ )
ઉપવલયની અર્ધ ગૈાણ અક્ષ $OB$ અને $F$ અને $F'$ તેની નાભિઓ છે.જો $FBF'$ એ કાટકોણ હોય તો તેની ઉત્કેન્દ્રતા મેળવો.