જો ઉપવલયના ગૌણ અક્ષની લંબાઈ એ નાભિઓ વચ્ચેના અંતરનું અડધું હોય, તો ઉપવલયની ઉત્કેન્દ્રતા.................... થાય.
$\frac{\sqrt{5}}{3}$
$\frac{\sqrt{3}}{2}$
$\frac{1}{\sqrt{3}}$
$\frac{2}{\sqrt{5}}$
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ $b=3,\,\, c=4,$ કેન્દ્ર ઊગમબિંદુ તથા નાભિઓ $x-$ અક્ષ પર હોય.
ધારો કે વક્રો $4\left(x^{2}+y^{2}\right)=9$ અને $y^{2}=4 x$ ના સામાન્ય સ્પર્શકો $Q$ બિંદુમાં છેદે છે. ધારે કે $O$ કેન્દ્રવાળા એક ઉપવલયના ગૌણ અક્ષ અને પ્રધાન અક્ષ ની અર્લંધબાઈઓ અનુક્રમે $OQ$ અને $6$ છે.જો આ ઉપવલય ઉત્કેન્દ્રતા $e$ અને નાભિલંબની લંબાઈ $l$ હોય, તો $\frac{l}{ e ^{2}}=\dots\dots\dots$
ઉગમબિંદુમાંથી પસાર થતા અને બિંદુઓ $(1, 0)$ અને $(3, 0)$ આગળ નાભિઓ ધરાવતા ઉપવલયનું સમીકરણ .....
જો સુરેખા $y\,\, = \,\,4x\,\, + \;\,c$ એ ઉપવલય $\frac{{{x^2}}}{8}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$ નો સ્પર્શક હોય, તો $c\,\, = \,...........$
ઉગમબિંદુ આગળ કેન્દ્રવાળા ઉપવલયની ઉત્કેન્દ્રતા $1/2$ છે. જો એક નિયામિકા $x = 4$ હોય તો ઉપવલયનું સમીકરણ :