Argument of $ - 1 - i\sqrt 3 $ is
$\frac{{2\pi }}{3}$
$\frac{\pi }{3}$
$ - \frac{\pi }{3}$
$ - \frac{{2\pi }}{3}$
If $z = 3 + 5i,\,\,{\rm{then }}\,{z^3} + \bar z + 198 = $
If $\frac{{z - \alpha }}{{z + \alpha }}\left( {\alpha \in R} \right)$ is a purely imaginary number and $\left| z \right| = 2$, then a value of $\alpha $ is
The sum of amplitude of $z$ and another complex number is $\pi $. The other complex number can be written
Let $\alpha$ and $\beta$ be the sum and the product of all the non-zero solutions of the equation $(\bar{z})^2+|z|=0, z \in C$. Then $4\left(\alpha^2+\beta^2\right)$ is equal to :
If the conjugate of $(x + iy)(1 - 2i)$ be $1 + i$, then