Argument of $ - 1 - i\sqrt 3 $ is
$\frac{{2\pi }}{3}$
$\frac{\pi }{3}$
$ - \frac{\pi }{3}$
$ - \frac{{2\pi }}{3}$
The argument of the complex number $ - 1 + i\sqrt 3 $ is ............. $^\circ$
If the set $\left\{\operatorname{Re}\left(\frac{z-\bar{z}+z \bar{z}}{2-3 z+5 \bar{z}}\right): z \in C , \operatorname{Re}(z)=3\right\}$ is equal to the interval $(\alpha, \beta]$, then $24(\beta-\alpha)$ is equal to
Let $z$ be a complex number with non-zero imaginary part. If $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ is a real number, then the value of $|z|^2$ is. . . . .
If complex numbers $(x -2y) + i(3x -y)$ and $(2x -y) + i(x -y + 6)$ are conjugates of each other, then $|x + iy|$ is $(x,y \in R)$
If $|z|\, = 4$ and $arg\,\,z = \frac{{5\pi }}{6},$then $z =$