Argument of $ - 1 - i\sqrt 3 $ is

  • A

    $\frac{{2\pi }}{3}$

  • B

    $\frac{\pi }{3}$

  • C

    $ - \frac{\pi }{3}$

  • D

    $ - \frac{{2\pi }}{3}$

Similar Questions

The argument of the complex number $ - 1 + i\sqrt 3 $ is ............. $^\circ$

If the set $\left\{\operatorname{Re}\left(\frac{z-\bar{z}+z \bar{z}}{2-3 z+5 \bar{z}}\right): z \in C , \operatorname{Re}(z)=3\right\}$ is equal to the interval $(\alpha, \beta]$, then $24(\beta-\alpha)$ is equal to

  • [JEE MAIN 2023]

Let $z$ be a complex number with non-zero imaginary part. If $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ is a real number, then the value of $|z|^2$ is. . . . . 

  • [IIT 2022]

If complex numbers $(x -2y) + i(3x -y)$ and $(2x -y) + i(x -y + 6)$ are conjugates of each other, then $|x + iy|$ is $(x,y \in R)$ 
 

If $|z|\, = 4$ and $arg\,\,z = \frac{{5\pi }}{6},$then $z =$