If a complex number $z$ statisfies the equation $x + \sqrt 2 \,\,\left| {z + 1} \right|\,+ \,i\, = \,0,$ then $\left| z \right|$ is equal to
$2$
$\sqrt 3$
$\sqrt 5$
$1$
If $z_1, z_2 $ are any two complex numbers, then $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ is equal to
Let $z$ be a complex number. Then the angle between vectors $z$ and $ - iz$ is
If $\frac{{2{z_1}}}{{3{z_2}}}$ is a purely imaginary number, then $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right|$ =
If $|z|\, = 1,(z \ne - 1)$and $z = x + iy,$then $\left( {\frac{{z - 1}}{{z + 1}}} \right)$ is
If $0 < amp{\rm{ (z)}} < \pi {\rm{,}}$then $amp(z)-amp ( - z) = $