As the temperature of water increases, its viscosity
Remains unchanged
Decreases
Increases
Increases or decreases depending on the external pressure
A spherical ball is dropped in a long column of a highly viscous liquid. The curve in the graph shown, which represents the speed of the ball $(v)$ as a function of time $(t)$ is
Define coefficient of viscosity.
A sphere is dropped under gravity through a fluid of viscosity $\eta$ . If the average acceleration is half of the initial acceleration, the time to attain the terminal velocity is ($\rho$ = density of sphere ; $r$ = radius)
What is the velocity $v$ of a metallic ball of radius $r$ falling in a tank of liquid at the instant when its acceleration is one-half that of a freely falling body ? (The densities of metal and of liquid are $\rho$ and $\sigma$ respectively, and the viscosity of the liquid is $\eta$).
In Millikan's oll drop experiment, what is the terminal speed of an uncharged drop of radius $2.0 \times 10^{-5} \;m$ and density $1.2 \times 10^{3} \;kg m ^{-3} .$ Take the viscosity of air at the temperature of the experiment to be $1.8 \times 10^{-5}\; Pa\; s$. How much is the viscous force on the drop at that speed? Neglect buoyancy of the drop due to atr.