At $298\,K$ a $0.1 \,M $ $C{H_3}COOH$ solution is $ 1.34\%$ ionized. The ionization constant ${K_a}$ for acetic acid will be
$1.82 \times {10^{ - 5}}$
$18.2 \times {10^{ - 5}}$
$0.182 \times {10^{ - 5}}$
None of these
The first ionization constant of $H _{2} S$ is $9.1 \times 10^{-8}$. Calculate the concentration of $HS ^{-}$ ion in its $0.1 \,M$ solution. How will this concentration be affected if the solution is $0.1\, M$ in $HCl$ also? If the second dissociation constant of $H _{2} S$ is $1.2 \times 10^{-13}$, calculate the concentration of $S^{2-}$ under both conditions.
A weak acid is $ 0.1\% $ ionised in $0.1\, M $ solution. Its $pH$ is
Ionic product of water at $310 \,K$ is $2.7 \times 10^{-14}$. What is the $\mathrm{pH}$ of neutral water at this temperature?
The $pH$ of the solution obtained on neutralisation of $40\, mL\, 0.1\, M\, NaOH$ with $40\, mL\, 0.1\, M\, CH_3COOH$ is
Determine the degree of ionization and $pH$ of a $0.05 \,M$ of ammonia solution. The ionization constant of ammonia can be taken from Table $7.7 .$ Also, calculate the ionization constant of the conjugate acid of ammonia.