At what angle must the two forces $(x + y)$ and $(x -y)$ act so that the resultant may be $\sqrt {({x^2} + {y^2})} $
${\cos ^{ - 1}}\left( { - \frac{{{x^2} + {y^2}}}{{2({x^2} - {y^2})}}} \right)$
${\cos ^{ - 1}}\left( { - \frac{{2({x^2} - {y^2})}}{{{x^2} + {y^2}}}} \right)$
${\cos ^{ - 1}}\left( { - \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}} \right)$
${\cos ^{ - 1}}\left( { - \frac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}} \right)$
While travelling from one station to another, a car travels $75 \,km$ North, $60\, km$ North-east and $20 \,km $ East. The minimum distance between the two stations is.......$km$
A particle is simultaneously acted by two forces equal to $4\, N$ and $3 \,N$. The net force on the particle is
What displacement must be added to the displacement $25\hat i - 6\hat j\,\,m$ to give a displacement of $7.0\, m$ pointing in the $X- $direction
In an octagon $ABCDEFGH$ of equal side, what is the sum of $\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }+\overrightarrow{ AE }+\overrightarrow{ AF }+\overrightarrow{ AG }+\overrightarrow{ AH }$ if, $\overrightarrow{ AO }=2 \hat{ i }+3 \hat{ j }-4 \hat{ k }$
Prove the associative law of vector addition.