3-1.Vectors
medium

કયા ખૂણે બે બળો $(x + y)$ અને $(x - y) $ એ પ્રક્રિયા કરે છે. તેથી તેમનું પરિણામી લગભગ $\sqrt {\left( {{x^2}\,\, + \;\,{y^2}} \right)} $ મળે ?

A

${\cos ^{ - 1}}\left( { - \frac{{{x^2} + {y^2}}}{{2({x^2} - {y^2})}}} \right)$

B

${\cos ^{ - 1}}\left( { - \frac{{2({x^2} - {y^2})}}{{{x^2} + {y^2}}}} \right)$

C

${\cos ^{ - 1}}\left( { - \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}} \right)$

D

${\cos ^{ - 1}}\left( { - \frac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}} \right)$

Solution

$ |\mathop { {\rm{R}}}\limits^ \to | = \sqrt {{A^2} + \; {B^2} + \; 2AB\cos \theta }$

$\sqrt {{x^2} + {y^2}} = \sqrt {{{\left( {x + y} \right)}^2} + \; {{\left( {x – y} \right)}^2} + \; 2 \left( {x + \; y} \right)\left( {x – y} \right)\cos \theta }$

$ \Rightarrow {x^2} + \; {y^2} = 2{x^2} + \; 2{y^2} + \; 2\left( {{x^2} – {y^2}} \right) \cos \theta$

$ \Rightarrow – \left( {{x^2} + \; {y^2}} \right) = 2\left( {{x^2} – {y^2}} \right) \cos \theta$

$ \Rightarrow \cos \theta = \frac{{ – \left( {{x^2} + \; {y^2}} \right)}}{{2 \left( {{x^2} – {y^2}} \right)}}$

$\Rightarrow \theta = {\cos ^{ – 1}} \left( {\frac{{ – \left( {{x^2} +  {y^2}} \right)}}{{2 \left( {{x^2} – {y^2}} \right)}}} \right)$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.