કયા ખૂણે બે બળો $(x + y)$ અને $(x - y) $ એ પ્રક્રિયા કરે છે. તેથી તેમનું પરિણામી લગભગ $\sqrt {\left( {{x^2}\,\, + \;\,{y^2}} \right)} $ મળે ?
${\cos ^{ - 1}}\left( { - \frac{{{x^2} + {y^2}}}{{2({x^2} - {y^2})}}} \right)$
${\cos ^{ - 1}}\left( { - \frac{{2({x^2} - {y^2})}}{{{x^2} + {y^2}}}} \right)$
${\cos ^{ - 1}}\left( { - \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}} \right)$
${\cos ^{ - 1}}\left( { - \frac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}} \right)$
ક્યાં સદિશને પરિણામી સદિશ $\mathop P\limits^ \to \,\, = \,\,2\hat i\,\, + \;\,7\hat j\,\, - \,\,10\hat k\,\,$ અને $\,\,\mathop Q\limits^ \to \,\, = \,\,\hat i\,\, + \;\,2\hat j\,\, + \;\,3\hat k$ માં ઉમેરવામાં આવે તો તે $X$- અક્ષની દિશામાં એકમ સદિશ આપે.
$\overrightarrow A = 4\hat i - 3\hat j$ અને $\overrightarrow B = 6\hat i + 8\hat j$ હોય તો , $\overrightarrow A \, + \overrightarrow B $ નુ મુલ્ય અને દિશા મેળવો.
સદિશોના સરવાળા માટે ક્રમનો નિયમ (સમક્રમી છે) સમજાવો.
શું બે સદિશોનો પરિણામી સદિશ શૂન્ય થઈ શકે?
જો $\mathop {\,{\rm{A}}}\limits^ \to \,\, + \;\,\mathop {\rm{B}}\limits^ \to \,\, = \,\mathop {\rm{C}}\limits^ \to $ અને $ {\rm{A}}\,\, + \;\,{\rm{B}}\,\, = \,\,{\rm{C}}\,$ હોય $\vec A $ અને $\vec B $ વચ્ચેનો ખૂણો કેટલો થાય .