Calculate the ${H^ + }$ ion concentration in a $1.00\,(M)$ $\,HCN\,$ litre solution $({K_a} = 4 \times {10^{ - 10}})$
$4 \times {10^{ - 14}}\,mole/litre$
$2 \times {10^{ - 5}}\,mole/litre$
$2.5 \times {10^{ - 5}}\,mole/litre$
None of these
Values of dissociation constant, $K_a$ are given as follows
Acid | $K_a$ |
$HCN$ | $6.2\times 10^{-10}$ |
$HF$ | $7.2\times 10^{-4}$ |
$HNO_2$ | $4.0\times 10^{-4}$ |
Correct order of increasing base strength of the base $CN^-,F^-$ and $NO_2^-$ will be
The $pH$ value of decinormal solution of $N{H_4}OH$ which is $20\%$ ionised, is
Derive ${K_a} \times {K_b} = {K_w}$ equation.
${K_a}$ of $C{H_3}COOH$ is $1.76 \times {10^{ - 5}}$ at $298$ $K$ temperature. Calculate dissociation constant of its conjugate base.
What is the dissociation constant for $NH_4OH$ if at a given temperature its $0.1\,N$ solution has $pH = 11.27$ and the ionic product of water is $7.1 \times 10^{-15}$ (antilog $0.73 = 5.37$ )