The $pH$ of $0.1\, M$ monobasic acid is $4.50$ Calculate the concentration of species $H ^{+},$ $A^{-}$ and $HA$ at equilibrium. Also, determine the value of $K_{a}$ and $pK _{a}$ of the monobasic acid.
$pH =-\log \left[ H ^{+}\right]$
Therefore, $\left[ H ^{+}\right]=10^{- pH } =10^{-4.50} $
$=3.16 \times 10^{-5} $
$\left[ H ^{+}\right]=\left[ A ^{-}\right]=3.16 \times 10^{-5}$
Thus, $K_{ a }=\left[ H ^{+}\right]\left[ A ^{-}\right] /[ HA ]$
${[HA]_{eqlbm}} = 0.1 - \left( {3.16 \times {{10}^{ - 5}}} \right) \simeq 0.1$
$K_{ a }=\left(3.16 \times 10^{-5}\right)^{2} / 0.1=1.0 \times 10^{-8}$
$p K_{ a }=-\log \left(10^{-8}\right)=8$
Alternatively, "Percent dissociation" is another useful method for measure of strength of a weak acid and is given as:
Percent dissociation
$ = {[HA]_{{\rm{dissociated }}}}/{[HA]_{{\rm{initial }}}} \times 100\% \,\,\,\,\,\,\left( {7.32} \right)$
At $25\,^o C$, the dissociation constant of a base $BOH$ is $1.0 \times {10^{ - 12}}$. The concentration of Hydroxyl ions in $0.01\, M$ aqueous solution of the base would be
A solution of weak acid $HA$ containing $0.01$ moles of acid per litre of solutions has $pH = 4$. The percentage degree of ionisation of the acid and the ionisation constant of acid are respectively.
What is $[{H^ + }]$ of a solution that is $0.01\,M$ in $HCN$ and $0.02\,M$ in $NaCN$ $({K_a}$for $HCN = 6.2 \times {10^{ - 10}})$
Sulphurous acid $\left( H _{2} SO _{3}\right)$ has $Ka _{1}=1.7 \times 10^{-2}$ and $Ka _{2}=6.4 \times 10^{-8} .$ The $pH$ of $0.588 \,M\, H _{2} SO _{3}$ is ..... . (Round off to the Nearest Integer)
Derive the equation of relation between weak base ionization constant ${K_b}$ and its conjugate acid ionization constant ${K_a}$