The $pH$ of $0.1\, M$ monobasic acid is $4.50$ Calculate the concentration of species $H ^{+},$ $A^{-}$ and $HA$ at equilibrium. Also, determine the value of $K_{a}$ and $pK _{a}$ of the monobasic acid.
$pH =-\log \left[ H ^{+}\right]$
Therefore, $\left[ H ^{+}\right]=10^{- pH } =10^{-4.50} $
$=3.16 \times 10^{-5} $
$\left[ H ^{+}\right]=\left[ A ^{-}\right]=3.16 \times 10^{-5}$
Thus, $K_{ a }=\left[ H ^{+}\right]\left[ A ^{-}\right] /[ HA ]$
${[HA]_{eqlbm}} = 0.1 - \left( {3.16 \times {{10}^{ - 5}}} \right) \simeq 0.1$
$K_{ a }=\left(3.16 \times 10^{-5}\right)^{2} / 0.1=1.0 \times 10^{-8}$
$p K_{ a }=-\log \left(10^{-8}\right)=8$
Alternatively, "Percent dissociation" is another useful method for measure of strength of a weak acid and is given as:
Percent dissociation
$ = {[HA]_{{\rm{dissociated }}}}/{[HA]_{{\rm{initial }}}} \times 100\% \,\,\,\,\,\,\left( {7.32} \right)$
Calculate $pH$ of solution of $6.0$ $gm$ acetic acid in $250$ $mL$. ( ${K_a} = 1.8 \times {10^{ - 5}}$ at $298$ $K$ ) ( $C = 12, H = 1, O = 16$ )
The $pH$ of $ 0.1 \,M$ solution of a weak monoprotic acid $1\%$ ionized is
The hydrogen ion concentration of a $0.006\,M$ benzoic acid solution is $({K_a} = 6 \times {10^{ - 5}})$
Degree of dissociation of $0.1\,N\,\,C{H_3}COOH$ is (Dissociation constant $ = 1 \times {10^{ - 5}}$)
Derive ${K_a} \times {K_b} = {K_w}$ equation.