The $pH$ of $0.1\, M$ monobasic acid is $4.50$ Calculate the concentration of species $H ^{+},$ $A^{-}$ and $HA$ at equilibrium. Also, determine the value of $K_{a}$ and $pK _{a}$ of the monobasic acid.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$pH =-\log \left[ H ^{+}\right]$

Therefore, $\left[ H ^{+}\right]=10^{- pH } =10^{-4.50} $

$=3.16 \times 10^{-5} $

$\left[ H ^{+}\right]=\left[ A ^{-}\right]=3.16 \times 10^{-5}$

Thus, $K_{ a }=\left[ H ^{+}\right]\left[ A ^{-}\right] /[ HA ]$

${[HA]_{eqlbm}} = 0.1 - \left( {3.16 \times {{10}^{ - 5}}} \right) \simeq 0.1$

$K_{ a }=\left(3.16 \times 10^{-5}\right)^{2} / 0.1=1.0 \times 10^{-8}$

$p K_{ a }=-\log \left(10^{-8}\right)=8$

Alternatively, "Percent dissociation" is another useful method for measure of strength of a weak acid and is given as:

Percent dissociation

$ = {[HA]_{{\rm{dissociated }}}}/{[HA]_{{\rm{initial }}}} \times 100\% \,\,\,\,\,\,\left( {7.32} \right)$

Similar Questions

Derive ${K_w} = {K_a} \times {K_b}$ and ${K_w} = p{K_a} \times p{K_b}$ for weak base $B$ and its conjugate acid ${B{H^ + }}$.

The first ionization constant of $H _{2} S$ is $9.1 \times 10^{-8}$. Calculate the concentration of $HS ^{-}$ ion in its $0.1 \,M$ solution. How will this concentration be affected if the solution is $0.1\, M$ in $HCl$ also? If the second dissociation constant of $H _{2} S$ is $1.2 \times 10^{-13}$, calculate the concentration of $S^{2-}$ under both conditions.

Concentration $C{N^ - }$ in $0.1\,M\,HCN$ is $[{K_a} = 4 \times {10^{ - 10}}]$

$5\%$ ionization is occur in $0.01$ $M$ $C{H_3}COOH$ solution. Calculate its dissociation constant.

Which oxychloride has maximum $pH$