Calculate the $pH$ of $0.08\, M$ solution of hypochlorous acid, $HOCl$. The ionization constant of the acid is $2.5 \times 10^{-5}$ Determine the percent dissociation of $HOCl.$
$HOCl(aq) + {H_2}O(l) \rightleftharpoons {H_3}{O^ + }(aq) + Cl{O^ - }(aq)$
Initial concentration $(M)$
$0.08$ $0$ $0$
Change to reach equilibrium concentration $(M)$
$-x$ $+x$ $+x$
equilibrium concentartion $( M )$
$0.08-x$ $x$ $x$
$K_{ a }=\left\{\left[ H _{3} O ^{+}\right]\left[ ClO ^{-}\right] /[ HOCl ]\right\}$
$=x^{2} /(0.08-x)$
As $x\,<\,<\,0.08,$ therefore $0.08 - x \simeq 0.08$
$x^{2} / 0.08=2.5 \times 10^{-5}$
$x^{2}=2.0 \times 10^{-6},$ thus, $x=1.41 \times 10^{-3}$
$\left[ H ^{+}\right]=1.41 \times 10^{-3} \,M$
Therefore
Percent dissociation
$ = \{ {[HOCl]_{{\rm{dissociated }}}}/{[HOCl]_{{\rm{initial }}}}] \times 100$
$=1.41 \times 10^{-3} \times 10^{2} / 0.08=1.76 \%$
$pH =-\log \left(1.41 \times 10^{-3}\right)=2.85$
The degree of dissociation $(\alpha )$ of $PCl_5$ obeying the equilibrium; is $PC{l_5}\, \rightleftharpoons \,PC{l_3}\, + \,C{l_2}$ related to the pressure at equlibrium by
$50\ ml$ of $0.02\ M$ $NaHSO_4$ is mixed with $50$ $ml$ of $0.02\ M\ Na_2SO_4$. Calculate $pH$ of the resulting solution.$[pKa_2 (H_2SO_4) = 2]$
The ionization constant of phenol is $1.0 \times 10^{-10} .$ What the concentration of phenolate ion in $0.05$ $M$ solution of phenol? What will be its degree of ionization if the solution is a lso $0.01$ $M$ in sodium phenolate?
What are Diprotic and Triprotic acid ? differentiation eat .
If $pK_a =\, -\,log K_a=4$ for a weak acid $HX$ and $K_a= C\alpha ^2$ then Van't Haff factor when $C = 0.01\,M$ is