Calculate the $pH$ of $0.08\, M$ solution of hypochlorous acid, $HOCl$. The ionization constant of the acid is $2.5 \times 10^{-5}$ Determine the percent dissociation of $HOCl.$
$HOCl(aq) + {H_2}O(l) \rightleftharpoons {H_3}{O^ + }(aq) + Cl{O^ - }(aq)$
Initial concentration $(M)$
$0.08$ $0$ $0$
Change to reach equilibrium concentration $(M)$
$-x$ $+x$ $+x$
equilibrium concentartion $( M )$
$0.08-x$ $x$ $x$
$K_{ a }=\left\{\left[ H _{3} O ^{+}\right]\left[ ClO ^{-}\right] /[ HOCl ]\right\}$
$=x^{2} /(0.08-x)$
As $x\,<\,<\,0.08,$ therefore $0.08 - x \simeq 0.08$
$x^{2} / 0.08=2.5 \times 10^{-5}$
$x^{2}=2.0 \times 10^{-6},$ thus, $x=1.41 \times 10^{-3}$
$\left[ H ^{+}\right]=1.41 \times 10^{-3} \,M$
Therefore
Percent dissociation
$ = \{ {[HOCl]_{{\rm{dissociated }}}}/{[HOCl]_{{\rm{initial }}}}] \times 100$
$=1.41 \times 10^{-3} \times 10^{2} / 0.08=1.76 \%$
$pH =-\log \left(1.41 \times 10^{-3}\right)=2.85$
The concentration of $[{H^ + }]$ and concentration of $[O{H^ - }]$ of a $ 0.1$ aqueous solution of $2\%$ ionised weak acid is [Ionic product of water $ = 1 \times {10^{ - 14}}]$
The percentage of pyridine $(C_5H_5N)$ that forms pyridinium ion $(C_5H_5N^+H)$ in a $0.10\, M$ aqueous pyridine solution ($K_b$ for $C_5H_5N = 1.7 \times 10^{-9}$) is
Dimethyl amine ${\left( {C{H_3}} \right)_2}NH$ is weak base and its ionization constant $ 5.4 \times {10^{ - 5}}$. Calculate $\left[ {O{H^ - }} \right],\left[ {{H_3}O} \right]$, $pOH$ and $pH$ of its $0.2$ $M$ solution at equilibrium.
The $pH$ value of decinormal solution of $N{H_4}OH$ which is $20\%$ ionised, is
The solution of $N{a_2}C{O_3}$ has $pH$