$0.08\, M$ હાયપોક્લોરસ ઍસિડ ( $HOCl$ ) દ્રાવણની $pH$ ગણો. ઍસિડનો આયનીકરણ અચળાંક $2.5 \times 10^{-5}$ છે. $HOCl$ નું ટકામાં વિયોજન ગણો.
$HOCl(aq) + {H_2}O(l) \rightleftharpoons {H_3}{O^ + }(aq) + Cl{O^ - }(aq)$
પ્રારંભિક સાંદ્રતા $(M)$
$0.08$ $0$ $0$
સાંદ્રતા સંતુલને પહોંચવા માટેનો ફેરફાર $(M)$
$-x$ $+x$ $+x$
સંતુલને સાંદ્રતા $(M)$
$0.08-x$ $x$ $x$
$K_{ a }=\left\{\left[ H _{3} O ^{+}\right]\left[ ClO ^{-}\right] /[ HOCl ]\right\}$
$=x^{2} /(0.08-x)$
$x\,<\,<\,0.08,$ હોવાથી $0.08 - x \simeq 0.08$
$x^{2} / 0.08=2.5 \times 10^{-5}$
$x^{2}=2.0 \times 10^{-6},$ આથી $x=1.41 \times 10^{-3}$
$\left[ H ^{+}\right]=1.41 \times 10^{-3} \,M$
માટે ટકામાં વિયોજન
$ = \{ {[HOCl]_{{\rm{dissociated }}}}/{[HOCl]_{{\rm{initial }}}}] \times 100$
$=1.41 \times 10^{-3} \times 10^{2} / 0.08=1.76 \%$
$pH =-\log \left(1.41 \times 10^{-3}\right)=2.85$
$5 \times 10^{-3} \,M\, H_2CO_3$ દ્રાવણનું $10%$ વિયોજન થાય તો આયનની $H^+$ સાંદ્રતા $= …….$
જો $100\, ml. pH = 3$ અને $400 \,ml. pH = 3$ ને મિશ્ર કરવામાં આવે તો મિશ્રણની $pH$ = ?
${H_2}A$ એસિડના પ્રથમ અને દ્વિતીય વિયોજન અચળાંકો અનુક્રમે $1.0 \times {10^{ - 5}}$ અને $5.0 \times {10^{ - 10}}$ છે. તો આ એસિડ ${H_2}A$ નો કુલ વિયોજન અચળાંક ....... થાય.
${H_2}C{O_3}$ ના જલીય દ્રાવણમાં તેના આયનીકરણ અચળાંક ${K_1} = 4.2 \times {10^{ - 7}}$ અને ${K_2} = 4.8 \times {10^{ - 11}}$ છે. કાબોનિક એસિડના $0.034$ $M$ સંતૃપ્ત દ્રાવણમાં કયું વિધાન સાચું હશે ?
નિર્બળ વિધુતવિભાજ્યની $pH$ ની ગણતરીની રીતનો તબક્કાવાર અભિગમ સમજાવો.