Calculate the $pH$ of the solution in which $0.2 \,M\, NH _{4} Cl$ and $0.1 \,M\, NH _{3}$ are present. The $pK _{ b }$ of ammonia solution is $4.75$
$NH _{3}+ H _{2} O \rightleftharpoons NH _{4}^{+}+ OH ^{-}$
The ionization constant of $NH _{3}$
$K_{ b }=$ antilog $\left(- pK _{ b }\right)$ i.e.
$K_{b}=10^{-4.75}=1.77 \times 10^{-5} \,M$
$NH _{3}+ H _{2} O \rightleftharpoons NH _{4}^{+}+ OH ^{-}$
Initial concentration $(M)$
$0.10$ $0.20$ $0$
Change to reach equilibrium $(M)$
$-x$ $+x$ $+x$
At equilibrium $(M)$
$0.10-x$ $0.20+x$ $x$
$K_{ b }=\left[ NH _{4}^{+}\right]\left[ OH ^{-}\right] /\left[ NH _{3}\right]$
$=(0.20+x)(x) /(0.1-x)=1.77 \times 10^{-5}$
As $K_{ b }$ is small, we can neglect $x$ in comparison to $0.1 \,M$ and $0.2\, M$. Thus,
$\left[ OH ^{-}\right]= x =0.88 \times 10^{-5}$
Therefore, $\left[ H ^{+}\right]=1.12 \times 10^{-9}$
$pH =-\log \left[ H ^{+}\right]=8.95$
The $ pH$ of $ 0.1$ $M$ acetic acid is $3$, the dissociation constant of acid will be
A weak acid, $HA,$ has a $K_a$ of $1.00 \times 10^{-5}.$ If $0.100 \,mol$ of this acid is dissolved in one litreof water, the percentage of acid dissociated at equilibrium is closest to.....$\%$
$0.01\, M \,HA(aq.)$ is $2\%$ ionized, $[OH^-]$ of solution is :-
The ionisation constant of acetic acid is $1.8 \times 10^{-5}$. The concentration at which it will be dissociated to $2\%$, is
Write characteristics and uses of ${K_a}$ value.