Calculate the $pH$ of the solution in which $0.2 \,M\, NH _{4} Cl$ and $0.1 \,M\, NH _{3}$ are present. The $pK _{ b }$ of ammonia solution is $4.75$
$NH _{3}+ H _{2} O \rightleftharpoons NH _{4}^{+}+ OH ^{-}$
The ionization constant of $NH _{3}$
$K_{ b }=$ antilog $\left(- pK _{ b }\right)$ i.e.
$K_{b}=10^{-4.75}=1.77 \times 10^{-5} \,M$
$NH _{3}+ H _{2} O \rightleftharpoons NH _{4}^{+}+ OH ^{-}$
Initial concentration $(M)$
$0.10$ $0.20$ $0$
Change to reach equilibrium $(M)$
$-x$ $+x$ $+x$
At equilibrium $(M)$
$0.10-x$ $0.20+x$ $x$
$K_{ b }=\left[ NH _{4}^{+}\right]\left[ OH ^{-}\right] /\left[ NH _{3}\right]$
$=(0.20+x)(x) /(0.1-x)=1.77 \times 10^{-5}$
As $K_{ b }$ is small, we can neglect $x$ in comparison to $0.1 \,M$ and $0.2\, M$. Thus,
$\left[ OH ^{-}\right]= x =0.88 \times 10^{-5}$
Therefore, $\left[ H ^{+}\right]=1.12 \times 10^{-9}$
$pH =-\log \left[ H ^{+}\right]=8.95$
$0.01\, M \,HA(aq.)$ is $2\%$ ionized, $[OH^-]$ of solution is :-
What is the percent ionization $(\alpha)$ of a $0.01\, M\, HA$ solution ? .......$\%$ $(K_a = 10^{-6})$
Determine the degree of ionization and $pH$ of a $0.05 \,M$ of ammonia solution. The ionization constant of ammonia can be taken from Table $7.7 .$ Also, calculate the ionization constant of the conjugate acid of ammonia.
$25$ $mL$ $0.1$ $M$ $HCl$ solution is diluted till $500$ $mL$. Calculate $pH$ of dilute solution.
A certain amount of $H_2CO_3$ & $HCl$ are dissolved to form $1$ litre solution. At equilibrium it is found that concentration of $H_2CO_3$ & $CO_3^{-\,-}$ are $0.1\,M$ & $0.01\,M$ respectively. Calculate the $pH$ of solution. Given that for $H_2CO_3$ $K_{a_1} =10^{-5}$ & $K_{a_2} =10^{-8}$