Calculate the $pH$ of the solution in which $0.2 \,M\, NH _{4} Cl$ and $0.1 \,M\, NH _{3}$ are present. The  $pK _{ b }$ of ammonia solution is $4.75$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$NH _{3}+ H _{2} O \rightleftharpoons NH _{4}^{+}+ OH ^{-}$

The ionization constant of $NH _{3}$

$K_{ b }=$ antilog $\left(- pK _{ b }\right)$ i.e.

$K_{b}=10^{-4.75}=1.77 \times 10^{-5} \,M$

$NH _{3}+ H _{2} O \rightleftharpoons NH _{4}^{+}+ OH ^{-}$

Initial concentration $(M)$

$0.10$                              $0.20$         $0$

Change to reach equilibrium $(M)$

$-x$                                  $+x$            $+x$

At equilibrium $(M)$

$0.10-x$                       $0.20+x$           $x$

$K_{ b }=\left[ NH _{4}^{+}\right]\left[ OH ^{-}\right] /\left[ NH _{3}\right]$

$=(0.20+x)(x) /(0.1-x)=1.77 \times 10^{-5}$

As $K_{ b }$ is small, we can neglect $x$ in comparison to $0.1 \,M$ and $0.2\, M$. Thus,

$\left[ OH ^{-}\right]= x =0.88 \times 10^{-5}$

Therefore, $\left[ H ^{+}\right]=1.12 \times 10^{-9}$

$pH =-\log \left[ H ^{+}\right]=8.95$

Similar Questions

Calculate the $pH$ of a $0.10 \,M$ ammonia solution. Calculate the pH after $50.0 \,mL$ of this solution is treated with $25.0 \,mL$ of $0.10 \,M$ $HCl$. The dissociation constant of ammonia, $K_{b}=1.77 \times 10^{-5}$

At $298$ $K$ temperature, the ${K_b}$ of ${\left( {C{H_3}} \right)_2}NH$ is $5.4 \times {10^{ - 4}}$ $0.25$ $M$ solution.

Derive the equation of ionization constant $({K_b})$ of weak base.

If degree of ionisation is $0.01$ of decimolar solution of weak acid $HA$ then $pKa$ of acid is

It has been found that the $pH$ of a $0.01$ $M$ solution of an organic acid is $4.15 .$ Calculate the concentration of the anion, the ionization constant of the acid and its $p{K_a}$