Calculate the mean, variance and standard deviation for the following distribution:

Class $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $90-100$
$f_i$ $3$ $7$ $12$ $15$ $8$ $3$ $2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

From the given data, we construct the following Table

Class

Freq

$\left( {{f_i}} \right)$

Mid-point

$\left( {{x_i}} \right)$

${f_i}{x_i}$ ${\left( {{x_i} - \bar x} \right)^2}$ ${f_i}{\left( {{x_i} - \bar x} \right)^2}$
$30-40$ $3$ $35$ $105$ $729$ $2187$
$40-50$ $7$ $45$ $315$ $289$ $2023$
$50-60$ $12$ $55$ $660$ $49$ $588$
$60-70$ $15$ $6$ $975$ $9$ $135$
$70-80$ $8$ $75$ $600$ $169$ $1352$
$80-90$ $3$ $85$ $255$ $529$ $1587$
$90-100$ $2$ $95$ $190$ $1089$ $2178$
  $50$   $3100$   $10050$

Thus   Mean $\bar x = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{x_i}}  = \frac{{3100}}{{50}} = 62$

Variance  $\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2}} $

$ = \frac{1}{{50}} \times 10050 = 201$

and Standerd deviation $\left( \sigma  \right) = \sqrt {201}  = 14.18$

Similar Questions

Find the standard deviation for the following data:

${x_i}$ $3$ $8$ $13$ $18$ $25$
${f_i}$ $7$ $10$ $15$ $10$ $6$

Let $S$ be the set of all values of $a_1$ for which the mean deviation about the mean of $100$ consecutive positive integers $a _1, a _2, a _3, \ldots ., a _{100}$ is $25$. Then $S$ is

  • [JEE MAIN 2023]

Let $ \bar x , M$ and $\sigma^2$ be respectively the mean, mode and variance of $n$ observations $x_1 , x_2,...,x_n$ and $d_i\, = - x_i - a, i\, = 1, 2, .... , n$, where $a$ is any number.
Statement $I$: Variance of $d_1, d_2,.....d_n$ is $\sigma^2$.
Statement $II$ : Mean and mode of $d_1 , d_2, .... d_n$ are $-\bar x -a$ and $- M - a$, respectively

  • [JEE MAIN 2014]

Let sets $A$ and $B$ have $5$ elements each. Let the mean of the elements in sets $A$ and $B$ be $5$ and $8$ respectively and the variance of the elements in sets $A$ and $B$ be $12$ and $20$ respectively $A$ new set $C$ of $10$ elements is formed by subtracting $3$ from each element of $A$ and adding 2 to each element of B. Then the sum of the mean and variance of the elements of $C$ is $.......$.

  • [JEE MAIN 2023]

Let $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{N}$ and $\mathrm{a}<\mathrm{b}<\mathrm{c}$. Let the mean, the mean deviation about the mean and the variance of the $5$ observations $9$,$25$, $a$, $b$, $c$ be $18$,$4$ and $\frac{136}{5}$, respectively. Then $2 \mathrm{a}+\mathrm{b}-\mathrm{c}$ is equal to ..............

  • [JEE MAIN 2024]