Let the mean and the variance of 6 observation $a, b$, $68,44,48,60$ be $55$ and $194 $, respectively if $a>b$, then $a+3 b$ is
$200$
$190$
$180$
$210$
The mean and standard deviation of $20$ observations were calculated as $10$ and $2.5$ respectively. It was found that by mistake one data value was taken as $25$ instead of $35 .$ If $\alpha$ and $\sqrt{\beta}$ are the mean and standard deviation respectively for correct data, then $(\alpha, \beta)$ is :
Statement $1$ : The variance of first $n$ odd natural numbers is $\frac{{{n^2} - 1}}{3}$
Statement $2$ : The sum of first $n$ odd natural number is $n^2$ and the sum of square of first $n$ odd natural numbers is $\frac{{n\left( {4{n^2} + 1} \right)}}{3}$
Let $X _{1}, X _{2}, \ldots, X _{18}$ be eighteen observations such that $\sum_{ i =1}^{18}\left( X _{ i }-\alpha\right)=36 \quad$ and $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90,$ where $\alpha$ and $\beta$ are distinct real numbers. If the standard deviation of these observations is $1,$ then the value of $|\alpha-\beta|$ is ...... .
If the variance of $10$ natural numbers $1,1,1, \ldots ., 1, k$ is less than $10 ,$ then the maximum possible value of $k$ is ...... .
In any discrete series (when all values are not same) the relationship between $M.D.$ about mean and $S.D.$ is