Charges $Q, 2Q$ and $4Q$ are uniformly distributed in three dielectric solid spheres $1,2$ and $3$ of radii $R/2, R$ and $2 R$ respectively, as shown in figure. If magnitudes of the electric fields at point $P$ at a distance $R$ from the centre of spheres $1,2$ and $3$ are $E_1 E_2$ and $E_3$ respectively, then
$E_1 > E_2 > E_3$
$E_3 > E_1 > E_2$
$E_2 > E_1 > E_3$
$E_3 > E_2 > E_1$
$\sigma$ is the uniform surface charge density of a thin spherical shell of radius $R$. The electric field at any point on the surface of the spherical shell is:
Two infinite planes each with uniform surface charge density $+\sigma$ are kept in such a way that the angle between them is $30^{\circ} .$ The electric field in the region shown between them is given by
The nuclear charge $(\mathrm{Ze})$ is non-uniformly distributed within a nucleus of radius $R$. The charge density $\rho$ (r) [charge per unit volume] is dependent only on the radial distance $r$ from the centre of the nucleus as shown in figure The electric field is only along rhe radial direction.
Figure:$Image$
$1.$ The electric field at $\mathrm{r}=\mathrm{R}$ is
$(A)$ independent of a
$(B)$ directly proportional to a
$(C)$ directly proportional to $\mathrm{a}^2$
$(D)$ inversely proportional to a
$2.$ For $a=0$, the value of $d$ (maximum value of $\rho$ as shown in the figure) is
$(A)$ $\frac{3 Z e}{4 \pi R^3}$ $(B)$ $\frac{3 Z e}{\pi R^3}$ $(C)$ $\frac{4 Z e}{3 \pi R^3}$ $(D)$ $\frac{\mathrm{Ze}}{3 \pi \mathrm{R}^3}$
$3.$ The electric field within the nucleus is generally observed to be linearly dependent on $\mathrm{r}$. This implies.
$(A)$ $a=0$ $(B)$ $\mathrm{a}=\frac{\mathrm{R}}{2}$ $(C)$ $a=R$ $(D)$ $a=\frac{2 R}{3}$
Give the answer question $1,2$ and $3.$
The electric field at a distance $\frac{3R}{2}$ from the centre of a charged conducting spherical shell of radius $R$ is $E.$ The electric field at a distance $\frac{R}{2}$ from the centre of the sphere is
Electric field at a point varies as ${r^o}$ for