संलग्न चित्र में दर्शाए गए तीन पराविधुत (dielectric) गोलो पर, जिनकी त्रिज्याऐं क्रमशः $R / 2, R$ तथा $2 R$ है, आवेश $Q, 2 Q$ तथा $4 Q$ क्रमशः समान रूप से वितरित है। यदि बिन्दु $P$, जो प्रत्येक गोले के केन्द्र से $R$ दूरी पर है, पर गोले $1,2$ तथा $3$ के कारण विधुत क्षेत्र का परिमाण क्रमशः $E _1, E _2$ तथा $E _3$ है तब
$E_1 > E_2 > E_3$
$E_3 > E_1 > E_2$
$E_2 > E_1 > E_3$
$E_3 > E_2 > E_1$
$R$ त्रिज्या के किसी आवेशित चालक गोलीय कोश (खोल) के केन्द्र से $\frac{3 R}{2}$ दूरी पर विधुत क्षेत्र $E$ है। इसके केन्द्र से $\frac{R}{2}$ दूरी पर विधुत क्षेत्र होगा।
दो अनंत लम्बाई की समानान्तर चालक पट्टिकायें (प्लेट्स) जिनके सतही आवेश घनत्व क्रमश : $ + \sigma $ और $ - \sigma $ हैं, एक थोड़ी दूरी के अंतराल पर रखी हैं। इन पट्टिकाओं के बीच का माध्यम निर्वात है। अगर निर्वात का परावैद्युतांक ${\varepsilon _0}$ है, तो पट्टिकाओं के बीच विद्युत क्षेत्र का मान है
एक अनन्त लम्बा रैखिक आवेश $2\,cm$ की दूरी पर $7.182 \times {10^8}\,N/C$ का विद्युत क्षेत्र उत्पन कर रहा है। रेखीय आवेश घनत्व होगा
दो बड़ी, पतली धातु की प्लेटें एक-दूसरे के समानांतर एवं निकट हैं। इनके भीतरी फलकों पर, प्लेटों के पृष्ठीय आवेश घनत्वों के चिह्न विपरीत हैं तथा इनका परिमाण $17.0 \times 10^{-22} C /$ $m ^{2}$ है।
$(a)$ पहली प्लेट के बाह्य क्षेत्र में, $(b)$ दूसरी प्लेट के बाह्हा क्षेत्र में, तथा $(c)$ प्लेटों के बीच में विद्र
चित्रानुसार त्रिज्या $R$ तथा आवेश $q$ का एक ठोस धात्वीय गोला $a$ आन्तरिक त्रिज्या तथा $b$ बाह्य त्रिज्या के गोलीय कोश के अन्दर समकेन्द्रीय रखा है। केन्द्र $O$ से $r$ दूरी के फलन के रूप में विधुत क्षेत्र $\overrightarrow{ E }$ का निकटतम विचरण होगा।