વર્તુળો ${x^2} + {y^2} - 2x - 4y = 0$ અને ${x^2} + {y^2} - 8y - 4 = 0$ એ. . . .
અંદરની બાજુએ સ્પર્શે
બહારની બાજુએ સ્પર્શે
બે બિંદુઓ માં છેદે છે
એકપણ નહીં.
બે વર્તૂળો $2x^{2} + 2y^{2} + 7x - 5y + 2 = 0$ અને $x^{2}+ y^{2} - 4x + 8y - 18 = 0 $ ની સામાન્ય જીવાની લંબાઇ.....
વર્તૂળો $x^2 + y^2 = 4$ અને $x^2 + y^2 + 2x + 4y = 6$ ની જેમ સમાન મૂલાક્ષ ધરાવતા વર્તૂળોના જૂથનું સમીકરણ.....
જો વર્તુળ $C$ જેની ત્રિજ્યા $3$ હોય તે વર્તુળ $x^2 + y^2 + 2x - 4y - 4 = 0$ ને બહારથી બિંદુ $(2, 2)$ આગળ સ્પર્શે તો વર્તુળ $C$ એ $x-$ અક્ષ સાથે બનાવેલ અંત:ખંડની લંબાઈ મેળવો.
$\lambda $ ની એવી શકય કિમતોનો ગણ મેળવો કે જેથી વર્તુળ $x^2 + y^2 - 4x - 4y+ 6\, = 0$ અને $x^2 + y^2 - 10x - 10y + \lambda \, = 0$ ને બરાબર બે સામાન્ય સ્પર્શકો હોય