Co-efficient of $\alpha ^t$ in the expansion of,

$(\alpha + p)^{m - 1} + (\alpha + p)^{m - 2} (\alpha + q) + (\alpha + p)^{m - 3} (\alpha + q)^2 + ...... (\alpha + q)^{m - 1}$

where $\alpha \ne - q$ and $p \ne q$ is :

  • A

    $\frac{{^m{C_t}\,\,\left( {{p^t}\, - \,{q^t}} \right)}}{{p\, - \,q}}$

  • B

    $\frac{{^m{C_t}\,\,\left( {{p^{m\, - \,t}}\, - \,{q^{m\, - \,t}}} \right)}}{{p\, - \,q}}$

  • C

    $\frac{{^m{C_t}\,\,\left( {{p^t}\, + \,{q^t}} \right)}}{{p\, - \,q}}$

  • D

    $\frac{{^m{C_t}\,\,\left( {{p^{m\, - \,t}}\, + \,{q^{m\, - \,t}}} \right)}}{{p\, - \,q}}$

Similar Questions

If the sum of the coefficients of all the positive even powers of $x$ in the binomial expansion of $\left(2 x^{3}+\frac{3}{x}\right)^{10}$ is $5^{10}-\beta \cdot 3^{9}$, then $\beta$ is equal to

  • [JEE MAIN 2022]

If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^2},$ then $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =

Let $\alpha=\sum_{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ and $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$. If $5 \alpha=6 \beta$, then $n$ equals

  • [JEE MAIN 2024]

The value of $\sum_{ r =0}^{6}\left({ }^{6} C _{ r }{ }^{-6} C _{6- r }\right)$ is equal to :

  • [JEE MAIN 2021]

$^n{C_0} - \frac{1}{2}{\,^n}{C_1} + \frac{1}{3}{\,^n}{C_2} - ...... + {( - 1)^n}\frac{{^n{C_n}}}{{n + 1}} = $