- Home
- Standard 11
- Mathematics
સમીકરણ $2{\sin ^2}x + {\sin ^2}2x = 2$ અને $\sin 2x + \cos 2x = \tan x,$ ના સામાન્ય બિજ મેળવો.
$x = (2n - 1)\frac{\pi }{2}$
$x = (2n + 1)\frac{\pi }{4}$
$x = (2n + 1)\frac{\pi }{3}$
એકપણ નહિ.
Solution
(b) $2{\sin ^2}x + {\sin ^2}2x = 2$ ……$(i)$
and $\sin 2x + \cos 2x = \tan x$…..$(ii)$
Solving $(i)$, ${\sin ^2}2x = 2{\cos ^2}x$
==>$2{\cos ^2}x\cos 2x = 0$
==>$x = (2n + 1)\frac{\pi }{2}{\rm{ or }}x = (2n + 1)\frac{\pi }{4}$
$\therefore $ Common roots are $(2n \pm 1)\frac{\pi }{4}$
Solving $(ii)$, $\frac{{2\tan x + 1 – {{\tan }^2}x}}{{1 + {{\tan }^2}x}} = \tan x$
$ \Rightarrow $ ${\tan ^3}x + {\tan ^2}x – \tan x – 1 = 0$
$ \Rightarrow $ $({\tan ^2}x – 1)\,(\tan x + 1) = 0$
$ \Rightarrow $ $x = m\pi \pm \frac{\pi }{4}$
Trick : For $n = 0$, option $(a)$ gives $\theta = – \frac{\pi }{2}$ which satisfies the equation $(i)$ but does not satisfy the $(ii)$.
Now option $(b) $ gives $\theta = \frac{\pi }{4}$ which satisfies both the equations.