સમીકરણ $cos^7x\, +\, sin^4x\, =\, 1$ ના $(-\pi, \pi)$ માં ઉકેલો મેળવો
$ - \frac{\pi }{2}\,,\,0$
$ - \frac{\pi }{2}\,,\,0\,,\,\frac{\pi }{2}$
$ \frac{\pi }{2}\,,\,0$
$0\,\,,\,\,\frac{\pi }{4}\,\,,\,\frac{\pi }{2}$
$[0,4\pi ]$ માં સમીકરણ $(s)$ of the equation $\left( {1 - \frac{1}{{2\,\sin x}}} \right){\cos ^2}\,2x\, = \,2\,\sin x\, - \,3\, + \,\frac{1}{{\sin x}}$ ના કેટલા ઉકેલો મળે ?
જો $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta + \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ હોય તો $\theta = $
સમીકરણ $\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
નું સમાધાન કરે તેવી $\theta $ ની $0$ અને $\pi /2$ ની વચ્ચેની કિમત મેળવો.
જો $e ^{\left(\cos ^{2} x+\cos ^{4} x+\cos ^{6} x+\ldots \ldots \infty\right) \log _{e} 2}$ એ સમીકરણ $t ^{2}-9 t +8=0,$ નું સમાધાન કરે, તો $\frac{2 \sin x}{\sin x+\sqrt{3} \cos x}\left(0 < x < \frac{\pi}{2}\right)$ નું મૂલ્ય .......... થાય.