Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ and $g:\{a, b, c\} \rightarrow$ $\{$ apple, ball, cat $\}$ defined as $f(1)=a$, $f(2)=b$, $f(3)=c$, $g(a)=$ apple, $g(b)=$ ball and $g(c)=$ cat. Show that $f,\, g$ and $gof$ are invertible. Find out $f^{-1}, \,g^{-1}$ and $(gof)^{-1}$ and show that $(gof)^{-1}=f^{-1}og^{-1}$
Note that by definition, $f$ and $g$ are bijective functions. Let $f^{-1}:\{a, b, c\} \rightarrow(1,2,3\}$ and $g^{-1}:$ $\{$ apple, ball, cat $\}$ $\rightarrow\{a, b, c\}$ be defined as $f^{-1}\{a\}=1,\, f^{-1}\{b\}=2$, $f^{-1}\{c\}=3$, $g^{-1}$ $\{$ apple $\}=a, \,g^{-1}$ $\{$ ball $\}=b$ and $g^{-1} $ $\{$ cat $\}=c$
It is easy to verify that $f^{-1}$ of $=I_{(1,2,3)}, \,fof^{-1}=I_{\{c, b, c)},\, g^{-1}$ og $=I_{(a, b, c)}$ and $gog^{-1}=I_{D}$ where, $D =\{$ apple, ball, cat $\} $ . Now, $gof:$ $\{1,2,3\} \rightarrow $ $\{$ apple, ball, cat $\}$ is given by $gof\,(1)=$ apple, $gof(2)=$ ball, $gof(3)=$ cat.
We can define $(gof)^{-1}: \{$ apple, ball , cat $\}$ $\rightarrow\{1,2,3\}$ by $(gof)^{-1}$ (apple) $=1,(gof)^{-1}$ (ball) $=2$ and $(gof)^{-1}$ (cat) $=3$ . It is easy to see that $(gof)^{-1}o(gof)$ $=I_{(1,2,3)}$ and $(gof)o(gof)^{-1}=I_{D} .$
Thus, we have seen that $f,\, g$ and $g$ of are invertible.
Now, $f^{-1}og ^{-1}$ (apple) $=f^{-1}(g^{-1}$ (apple)) $=f^{-1}(a)=1=(gof)^{-1}$ (apple)
$f^{-1}og^{-1} $ (ball) $=f^{-1}(g^{-1}$ (ball)) $=f^{-1}(b)=2=(gof)^{-1}$ (ball) and
$f^{-1} og ^{-1}$ ( cat ) $=f^{-1}(g^{-1}$ ( cat )) $=f^{-1}(c)=3=(gof)^{-1}$ (cat)
Hence $(gof)^{-1}=f^{-1} o g^{-1}$.
The above result is true in general situation also.
If $f(x) = 3x - 5$, then ${f^{ - 1}}(x)$
If $f: R \rightarrow R$ be given by $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}},$ then $fof(x)$ is ..........
If $f(x) = {x^2} + 1$, then ${f^{ - 1}}(17)$ and ${f^{ - 1}}( - 3)$ will be
Let f : $R \to R$ be defined by $f\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)$ , then number of solutions of $\left| {{f^{ - 1}}\left( x \right)} \right| = {e^{ - \left| x \right|}}$ is
State with reason whether following functions have inverse $g :\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with $g=\{(5,4),(6,3),(7,4),(8,2)\}$