- Home
- Standard 12
- Mathematics
વિધેયો $f:\{1,2,3\} \rightarrow\{a, b, c\}$ અને $g:\{a, b, c\} \rightarrow$ $\{$ સફરજન, દડો, બિલાડી $\}$ એ $f(1)=a$, $f(2)=b$, $f(3)=c$, $g(a)=$ સફરજન, $g(b)=$ દડો અને $g(c)=$ બિલાડી દ્વારા વ્યાખ્યાયિત વિધેયો છે. સાબિત કરો કે $f,\, g$ અને $gof$ વ્યસ્તસંપન્ન વિધેયો છે. $f^{-1}, \,g^{-1}$ અને $(gof)^{-1}$ શોધો અને સાબિત કરો કે $(gof)^{-1}=f^{-1}og^{-1}$.
Solution
Note that by definition, $f$ and $g$ are bijective functions. Let $f^{-1}:\{a, b, c\} \rightarrow(1,2,3\}$ and $g^{-1}:$ $\{$ apple, ball, cat $\}$ $\rightarrow\{a, b, c\}$ be defined as $f^{-1}\{a\}=1,\, f^{-1}\{b\}=2$, $f^{-1}\{c\}=3$, $g^{-1}$ $\{$ apple $\}=a, \,g^{-1}$ $\{$ ball $\}=b$ and $g^{-1} $ $\{$ cat $\}=c$
It is easy to verify that $f^{-1}$ of $=I_{(1,2,3)}, \,fof^{-1}=I_{\{c, b, c)},\, g^{-1}$ og $=I_{(a, b, c)}$ and $gog^{-1}=I_{D}$ where, $D =\{$ apple, ball, cat $\} $ . Now, $gof:$ $\{1,2,3\} \rightarrow $ $\{$ apple, ball, cat $\}$ is given by $gof\,(1)=$ apple, $gof(2)=$ ball, $gof(3)=$ cat.
We can define $(gof)^{-1}: \{$ apple, ball , cat $\}$ $\rightarrow\{1,2,3\}$ by $(gof)^{-1}$ (apple) $=1,(gof)^{-1}$ (ball) $=2$ and $(gof)^{-1}$ (cat) $=3$ . It is easy to see that $(gof)^{-1}o(gof)$ $=I_{(1,2,3)}$ and $(gof)o(gof)^{-1}=I_{D} .$
Thus, we have seen that $f,\, g$ and $g$ of are invertible.
Now, $f^{-1}og ^{-1}$ (apple) $=f^{-1}(g^{-1}$ (apple)) $=f^{-1}(a)=1=(gof)^{-1}$ (apple)
$f^{-1}og^{-1} $ (ball) $=f^{-1}(g^{-1}$ (ball)) $=f^{-1}(b)=2=(gof)^{-1}$ (ball) and
$f^{-1} og ^{-1}$ ( cat ) $=f^{-1}(g^{-1}$ ( cat )) $=f^{-1}(c)=3=(gof)^{-1}$ (cat)
Hence $(gof)^{-1}=f^{-1} o g^{-1}$.
The above result is true in general situation also.