- Home
- Standard 12
- Mathematics
The inverse of the function $f(x) = \frac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}} + 2$ is given by
${\log _e}{\left( {\frac{{x - 2}}{{x - 1}}} \right)^{1/2}}$
${\log _e}{\left( {\frac{{x - 1}}{{3 - x}}} \right)^{1/2}}$
${\log _e}{\left( {\frac{x}{{2 - x}}} \right)^{1/2}}$
${\log _e}{\left( {\frac{{x - 1}}{{x + 1}}} \right)^{ - 2}}$
Solution
(b) $y = \frac{{{e^x} – {e^{ – x}}}}{{{e^x} + {e^{ – x}}}} + 2\,\, $
$\Rightarrow \,\,y = \frac{{{e^{2x}} – 1}}{{{e^{2x}} + 1}} + 2\,\,$
$ \Rightarrow \,\,{e^{2x}} = \frac{{1 – y}}{{y – 3}} = \frac{{y – 1}}{{3 – y}}\,\, $
$\Rightarrow \,\,x = \frac{1}{2}{\log _e}\,\left( {\frac{{y – 1}}{{3 – y}}} \right)$
$ \Rightarrow {f^{ – 1}}(y) = {\log _e}\,{\left( {\frac{{y – 1}}{{3 – y}}} \right)^{1/2}} $
$\Rightarrow {f^{ – 1}}(x) = {\log _e}{\left( {\frac{{x – 1}}{{3 – x}}} \right)^{1/2}}$.