$f(x)=4 x+3$ द्वरा प्रद्त फलन $f: R \rightarrow R$ पर विचार कीजिए। सिद्ध कीजिए कि $f$ व्युत्क्रमणीय है। $f$ का प्रतिलोम फलन ज्ञात कीजिए।
$f : R \rightarrow R$ is given by, $f ( x )=4 x +3$
For one - one
Let $f(x)=f(y)$
$\Rightarrow 4 x+3=4 y+3$
$\Rightarrow 4 x=4 y$
$\Rightarrow x=y$
$\therefore f$ is a one - one function
For onto
For $y \in R,$ let $y=4 x+3$
$\Rightarrow x=\frac{y-3}{4} \in R$
Therefore, for any $y \in R ,$ there exists $x =\frac{y-3}{4} \in R ,$ such that
$f(x)=f\left(\frac{y-3}{4}\right)=4\left(\frac{y-3}{4}\right)+3=y$
$\therefore f$ is onto.
Thus, $f$ is one $-$ one and onto and therefore, $f^{-1}$ exists.
Let us define $g:$ $R \rightarrow R$ by $g(x)=\frac{y-3}{4}$
Now,
$(gof)(x)=g(f(x))=g(4 x+3)=\frac{(4 x+3)-3}{4}=\frac{4 x}{4}=x$
and
$(fog)(y)=f(g(y))=f\left(\frac{y-3}{4}\right)=4\left(\frac{y-3}{4}\right)+3=y-3+3=y$
$\therefore $ $gof= fog = I _{ R }$
Hence, $f$ is invertible and the inverse of $f$ is given by $f^{-1}(y)=g(y)=\frac{y-3}{4}$
सिद्ध कीजिए कि $f:[-1,1] \rightarrow R , f(x)=\frac{x}{(x+2)},$ द्वारा प्रदत्त फलन एकैकी है। फलन $f:[-1,1] \rightarrow(f$ का परिसर $),$ का प्रतिलोम फलन ज्ञात कीजिए।
(संकेत : $y \in$ परिसर $f,$ के लिए, $[-1,1]$ के किसी $x$ के अंतर्गत $y=f(x)=\frac{x}{x+2},$ अर्थात् $x=\frac{2 y}{(1-y)})$
निम्न में से कौनसा फलन स्वयं का व्युत्क्रम है
कारण सहित बतलाइए कि क्या निम्नलिखित फलनों के प्रतिलोम हैं:
$g:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ जहाँ
$g=\{(5,4),(6,3),(7,4),(8,2)\}$
$f(x)=x^{2}+4$ द्वारा प्रदत्त फलन $f: R _{+} \rightarrow[4, \infty)$ पर विचार कीजिए। सिद्ध कीजिए कि $f$
व्युत्क्रमणीय है तथा $f$ का प्रतिलोम $f^{-1}, f^{-1}(y)=\sqrt{y-4},$ द्वारा प्राप्त होता है, जहाँ $R$ सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है।
निम्नलिखित फलनों में से कौनसा फलन प्रतिलोम फलन है