10-1.Circle and System of Circles
medium

Consider a circle $(x-\alpha)^2+(y-\beta)^2=50$, where $\alpha, \beta>0$. If the circle touches the line $y+x=0$ at the point $P$, whose distance from the origin is $4 \sqrt{2}$ , then $(\alpha+\beta)^2$ is equal to................

A

$103$

B

$102$

C

$55$

D

$100$

(JEE MAIN-2024)

Solution

$ S:(x-\alpha)^2+(y-\beta)^2=50 $
$ C P=r $
$ \left|\frac{\alpha+\beta}{\sqrt{2}}\right|=5 \sqrt{2} $
$ \Rightarrow(\alpha+\beta)^2=100$

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.