- Home
- Standard 12
- Physics
एक समरूप आवेश घनत्व $\rho$ वाले घन है में केंद्र पर लगने बाले विद्युत विभव तथा घन के एक कोने में लगने वाले विद्युत विभव का अनुपात क्या होगा?
$2$
$\sqrt{3} / 2$
$\sqrt{2}$
$1$
Solution

$(a)$ For any charge distribution,
Potential $\propto \frac{\text { Charge }}{\text { Distance }}$
So, potential due to a cube at its corner is
$V=\frac{C \cdot Q}{a}$
where, $a=$ side length, $Q=$ charge
and $C=$ constant.
Now, consider point $A$ is centre of cube.
Potential at point $A=8 \times$ Potential due
to a cube of side $a$ and charge density $\rho$.
$\therefore \quad V_A=\frac{8 C \cdot Q}{a}=\frac{8 C \cdot \rho \cdot a^3}{a}$
where, $\rho=$ charge density.
$\Rightarrow \quad V_A=8 C \rho \cdot a^2 \quad \dots(i)$
Now, potential at point $B=$ potential due to a cube of side $2 a$ and charge density $\rho$.
$\Rightarrow \quad V_B=\frac{C \cdot Q}{2 a}=\frac{C \cdot \rho \cdot(2 a)^3}{2 a}$
$\Rightarrow \quad V_B=4 C \cdot \rho \cdot a^2 \quad \dots(ii)$
So, required ratio is $\frac{V_A}{V_B}=\frac{8 C \rho a^2}{4 C \rho a^2}=2$.