કેન્દ્ર ઉગમબિંદુ પર અને નાભિઓ $x-$ અક્ષ પર હોય તેવું એક અતિવલય $H$ ધ્યાને લો. ધારો એ અતિવલય $H$ ને તેના શિરાબિંદુ પર સ્પર્શતું તથા કેન્દ્ર તેની એક નાભિ પર હોય તેવું વર્તુળ છે. જો $C_1$ અને $C_2$ નાં ક્ષેત્રફળો અનુકુમે $36 \pi$ અને $4 \pi$ હોય, તો $\mathrm{H}$ ના નાભિલંબની લંબાઈ ........... છે.
$\frac{28}{3}$
$\frac{14}{3}$
$\frac{10}{3}$
$\frac{11}{3}$
જો જેનું કેન્દ્ર ઉંગમબિંદુ હોય તથા બિંદુ $(4, -2\sqrt 3)$ માંથી પસાર થતાં અતિવલયની નિયમિકાનું સમીકરણ $5x = 4\sqrt 5$ અને ઉત્કેન્દ્રતા $e$ હોય તો ...
ધારો કે $\mathrm{S}$ એ અતિવલય $\frac{x^2}{3}-\frac{y^2}{5}=1$ ની ધન $x$-અક્ષ પર આવેલ નાભિ છે. ધારો કે $\mathrm{C}$ એ કેન્દ્ર $\mathrm{A}(\sqrt{6}, \sqrt{5})$ અને બિંદુ $S$ માંથી પસાર થતું વર્તુળ છે.જો $\mathrm{O}$ ઊગમબિંદૂ હોય અને $SAB$ એ $C$ નો વ્યાસ હોય, તો ત્રિકોણ $OSB$ ના ક્ષેત્રફળનો વર્ગ ............. છે.
વર્તુળ $x^{2}+y^{2}=25$ ની જીવાના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો કે જે અતિવલય $ \frac{ x ^{2}}{9}-\frac{ y ^{2}}{16}=1$ ની સ્પર્શક થાય.
જો $\left( {{\text{k,}}\,\,{\text{2}}} \right)$ માંથી પસાર થતા અતિવલય $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\, $ ની ઉત્કેન્દ્રતા $\frac{{\sqrt {13} }}{3}\,$ હોય,તો ${k^2}\,$ નું મૂલ્ય:
જો અતિવલયનું કેન્દ્ર, શિરોબિંદુ અને નાભિકેન્દ્ર અનુક્રમે $ (0, 0), (4, 0)$ અને $ (6, 0) $ હોય, તો અતિવલયનું સમીકરણ.....