The latus-rectum of the hyperbola $16{x^2} - 9{y^2} = $ $144$, is
$\frac{{16}}{3}$
$\frac{{32}}{3}$
$\frac{8}{3}$
$\frac{4}{3}$
Locus of the middle points of the parallel chords with gradient $m$ of the rectangular hyperbola $xy = c^2 $ is
A square $ABCD$ has all its vertices on the curve $x ^{2} y ^{2}=1$. The midpoints of its sides also lie on the same curve. Then, the square of area of $ABCD$ is
Let $P (3\, sec\,\theta , 2\, tan\,\theta )$ and $Q\, (3\, sec\,\phi , 2\, tan\,\phi )$ where $\theta + \phi \, = \frac{\pi}{2}$ , be two distinct points on the hyperbola $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1$ . Then the ordinate of the point of intersection of the normals at $P$ and $Q$ is
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=576$
For the Hyperbola ${x^2}{\sec ^2}\theta - {y^2}cose{c^2}\theta = 1$ which of the following remains constant when $\theta $ varies $= ?$