એક સાદું લોલક વિચારો જેમાં ગોળાને એક દોરી સાથે બાંધેલું છે અને તે ગુરુત્વબળની અસર હેઠળ દોલનો કરે છે. ધારો કે સાદા લોલકનાં દોલનોનો આવર્તકાળ તેની લંબાઈ $(I)$, ગોળાનાં દળ $(m)$, ગુરુત્વપ્રવેગ $(g)$ પર આધારીત છે. તો પરિમાણની રીતનો ઉપયોગ કરીને આવર્તકાળનું સૂત્ર મેળવો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

આવર્તકાળ $T$ નો આધાર ભૌતિકરાશિઓ $l$ , $g$ અને $m$ પર છે જેને ગુણાકાર સ્વરૂપે નીચે મુજબ લખી શકાય :

$T=k l^{x} g^{y} m^{z}$ જ્યાં $k =$ પરિમાણરહિત અચળાંક અને $x, y$ અને $z$ ઘાતાંક છે. બંને બાજુનાં પરિમાણો લેતાં

$\left[ {{L^0}{M^0}{T^1}} \right] = {\left[ {{L^1}} \right]^x}{\left[ {{L^1}{T^{ - 2}}} \right]^y}{\left[ {{M^1}} \right]^z}$

$= L ^{x+y} T ^{-2 y} M ^{z}$

બંને બાજુ પરિમાણોની સરખામણી કરતાં

$x+y=0 ;-2 y=1 $ અને $z=0$

આથી, $x=\frac{1}{2}, y=-\frac{1}{2}, z=0$

આમ, $T=k l^{1 / 2} g^{-1 / 2}$ અથવા $T=k \sqrt{\frac{l}{g}}$ 

અહીં નોંધો કે અચળાંક $k$ નું મૂલ્ય પરિમાણની રીતે મેળવી શકાતું નથી. અહીં સમીકરણની જમણી બાજુએ કોઈ અંકનો ગુણાકાર કરવામાં કોઈ જ વાંધો નથી. કારણ કે પરિમાણ પર કોઈ જ અસર કરતો નથી. વાસ્તવમાં,

$k=2 \pi$ તેથી $T=2 \pi \sqrt{\frac{l}{g}}$

Similar Questions

માર્શિયન પધ્ધતિમાં બળ $(F)$, પ્રવેગ $(A)$ અને સમય $(T)$ ને મૂળભૂત રાશિ લેવામાં આવે તો માર્શિયન પધ્ધતિમાં લંબાઇનું પારિમાણિક સૂત્ર શું થાય?

ભૌતિક અચળાંકોના નીચે દર્શાવેલા સમીકરણો માથી (તેમના સામાન્ય ચિન્હોથી દર્શાવેલા) કયું એકમાત્ર સમીકરણ કે જે અલગ અલગ માપન પદ્ધતિમાં સમાન મૂલ્ય આપે?

  • [JEE MAIN 2014]

બળ $(F)$,લંબાઇ $(L)$ અને સમય $(T)$ મૂળભૂત એકમો હોય,તો દળનું પારિમાણીક સૂત્ર નીચેના પૈકી કયુ થશે?

$\frac{d y}{d x}=z w \sin \left(w t+\phi_0\right)$ માં $\left(w t+\phi_0\right)$ માટે પરિમાણ સૂત્ર

ધારો કે $[ {\varepsilon _0} ]$ એ શૂન્યાવકાશની પરમિટિવિટિ (પરાવૈદ્યુતિક) દર્શાવે છે.જો $M=$ દળ, $L=$ લંબાઇ, $T=$ સમય અને $A=$ વિદ્યુતપ્રવાહ દર્શાવે, તો .........

  • [JEE MAIN 2013]