एक सरल लोलक पर विचार कीजिए, जिसमें गोलक को एक धागे से बाँध कर लटकाया गया है और जो गुरुत्व बल के अधीन दोलन कर रहा है। मान लीजिए कि इस लोलक का दोलन काल इसकी लम्बाई $(l)$, गोलक के द्रब्यमान $(m)$ और गुर्त्वीय त्वरण $(g)$ पर निर्भर करता है। विमाओं की विधि का उपयोग करके इसके दोलन-काल के लिए सूत्र व्युत्पन्न कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Answer The dependence of time period $T$ on the quantities $l, g$ and $m$ as a product may be written as :

$T=k l^{x} g^{y} m^{z}$

where $k$ is dimensionless constant and $x, y$ and $z$ are the exponents.

By considering dimensions on both sides, we have

$\left[ L ^{\circ} M ^{\circ} T ^{1}\right]=\left[ L ^{1}\right]^{x}\left[ L ^{1} T ^{-2}\right]^{y}\left[ M ^{1}\right]^{z}$

$= L ^{x+y} T ^{-2 y} M ^{z}$

On equating the dimensions on both sides, we have $x+y=0 ;-2 y=1 ;$ and $z=0$

So that $x=\frac{1}{2}, y=-\frac{1}{2}, z=0$

Then, $T=k l^{1 / 2} g^{-1 / 2}$

or, $T=k \sqrt{\frac{l}{g}}$

Note that value of constant $k$ can not be obtained by the method of dimensions. Here it does not matter if some number multiplies the right side of this formula, because that does not affect its dimensions.

Actually, $k=2 \pi$ so that $T=2 \pi \sqrt{\frac{l}{g}}$

Similar Questions

कोई वस्तु द्रव में गतिशील है। इस पर क्रियाशील श्यान बल, वेग के समानुपाती है, तो समानुपातिक नियतांक की विमा होगी

एक ट्यूब की लम्बाई $\ell$ तथा त्रिज्या $r$ है। इसमें टॉरपीन का तेल बहता है। ट्यूब के दोनों सिरों का दाबान्तर $p$ है तथा श्यानता गुणांक है

$\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v l}$

जहाँ ट्यूब के अक्ष से $x$ दूरी पर तेल का वेग $v$ है। $\eta$ की विमायें हैं

  • [AIPMT 1993]

मात्रकों की किसी पद्धति में यदि बल $(F)$, त्वरण $(a)$ एवं समय $(T) $ को मूल मात्रक माना जाये तो ऊर्जा का विमीय-सूत्र होगा

न्यूटन के अनुसार, किसी द्रव की पर्तों के बीच लगने वाला श्यान बल $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ होता है । जहाँ $A$ द्रव की सतह का क्षेत्रफल, $\Delta v/\Delta z$ वेग प्रवणता और $\eta $ श्यानता गुणांक है तब $\eta $ की विमा होगी

  • [AIPMT 1990]

एक द्रव्यमान $m$ स्प्रिंग से लटका है जिसका स्प्रिंग नियतांक $K$ है। इस द्रव्यमान की आवृत्ति $f$ निम्न सूत्र द्वारा दर्शायी जा रही है $f = C.{m^x}.{K^y}$ यहाँ पर $C$ एक विमाहीन राशि है। $x$ और $y$ के मान होंगें 

  • [AIPMT 1990]