एक सरल लोलक पर विचार कीजिए, जिसमें गोलक को एक धागे से बाँध कर लटकाया गया है और जो गुरुत्व बल के अधीन दोलन कर रहा है। मान लीजिए कि इस लोलक का दोलन काल इसकी लम्बाई $(l)$, गोलक के द्रब्यमान $(m)$ और गुर्त्वीय त्वरण $(g)$ पर निर्भर करता है। विमाओं की विधि का उपयोग करके इसके दोलन-काल के लिए सूत्र व्युत्पन्न कीजिए।
Answer The dependence of time period $T$ on the quantities $l, g$ and $m$ as a product may be written as :
$T=k l^{x} g^{y} m^{z}$
where $k$ is dimensionless constant and $x, y$ and $z$ are the exponents.
By considering dimensions on both sides, we have
$\left[ L ^{\circ} M ^{\circ} T ^{1}\right]=\left[ L ^{1}\right]^{x}\left[ L ^{1} T ^{-2}\right]^{y}\left[ M ^{1}\right]^{z}$
$= L ^{x+y} T ^{-2 y} M ^{z}$
On equating the dimensions on both sides, we have $x+y=0 ;-2 y=1 ;$ and $z=0$
So that $x=\frac{1}{2}, y=-\frac{1}{2}, z=0$
Then, $T=k l^{1 / 2} g^{-1 / 2}$
or, $T=k \sqrt{\frac{l}{g}}$
Note that value of constant $k$ can not be obtained by the method of dimensions. Here it does not matter if some number multiplies the right side of this formula, because that does not affect its dimensions.
Actually, $k=2 \pi$ so that $T=2 \pi \sqrt{\frac{l}{g}}$
प्रेरकत्व $L$ को निम्न में से किसकी तरह विमीय रुप से प्रदर्शित किया जाता है
दाब की विमायें निम्न में से किसके तुल्य है
विभानतार $V$, विधुत धारा $I$, पराविधुतांक $\varepsilon_0$, पारगम्यता $\mu_0$ तथा प्रकाश की चाल $c$ को मिलाकर विमीय रूप से सही विकल्प है (हैं)
$(A)$ $\mu_0 I ^2=\varepsilon_0 V ^2$ $(B)$ $\varepsilon_0 I =\mu_0 V$ $(C)$ $I =\varepsilon_0 cV$ $(D)$ $\mu_0 cI =\varepsilon_0 V$
वह कौनसी भौतिक राशि है जिसका विमीय सूत्र $\frac{{{\rm{Energy}}}}{{{\rm{Mass}} \times {\rm{Length}}}}$ के तुल्य होगा
कौनसी भौतिक राशियों की विमायें समान हैं