The sum of the series $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + ........$ to $9$ terms is
Let $x _1, x _2 \ldots ., x _{100}$ be in an arithmetic progression, with $x _1=2$ and their mean equal to $200$ . If $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$, then the mean of $y _1, y _2$, $y _{100}$ is
Suppose the sum of the first $m$ terms of an arithmetic progression is $n$ and the sum of its first $n$ terms is $m$, where $m \neq n$. Then, the sum of the first $(m+n)$ terms of the arithmetic progression is
The income of a person is $Rs. \,3,00,000,$ in the first year and he receives an increase of $Rs.\,10,000$ to his income per year for the next $19$ years. Find the total amount, he received in $20$ years.
Which of the following sequence is an arithmetic sequence